Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 29
Filtrar
Mais filtros








Base de dados
Intervalo de ano de publicação
1.
Opt Express ; 32(3): 4413-4426, 2024 Jan 29.
Artigo em Inglês | MEDLINE | ID: mdl-38297643

RESUMO

X-ray multi-projection imaging (XMPI) has the potential to provide rotation-free 3D movies of optically opaque samples. The absence of rotation enables superior imaging speed and preserves fragile sample dynamics by avoiding the centrifugal forces introduced by conventional rotary tomography. Here, we present our XMPI observations at the ID19 beamline (ESRF, France) of 3D dynamics in melted aluminum with 1000 frames per second and 8 µm resolution per projection using the full dynamical range of our detectors. Since XMPI is a method under development, we also provide different tests for the instrumentation of up to 3000 frames per second. As the high-brilliance of 4th generation light-sources becomes more available, XMPI is a promising technique for current and future X-ray imaging instruments.

2.
Opt Express ; 31(16): 26383-26397, 2023 Jul 31.
Artigo em Inglês | MEDLINE | ID: mdl-37710501

RESUMO

Here we demonstrate the results of investigating the damage threshold of a LiF crystal after irradiating it with a sequence of coherent femtosecond pulses using the European X-ray Free Electron Laser (EuXFEL). The laser fluxes on the crystal surface varied in the range ∼ 0.015-13 kJ/cm2 per pulse when irradiated with a sequence of 1-100 pulses (tpulse ∼ 20 fs, Eph = 9 keV). Analysis of the surface of the irradiated crystal using different reading systems allowed the damage areas and the topology of the craters formed to be accurately determined. It was found that the ablation threshold decreases with increasing number of X-ray pulses, while the depth of the formed craters increases non-linearly and reaches several hundred nanometers. The obtained results have been compared with data already available in the literature for nano- and picosecond pulses from lasers in the soft X-ray/VUV and optical ranges. A failure model of lithium fluoride is developed and verified with simulation of material damage under single-pulse irradiation. The obtained damage threshold is in reasonably good agreement with the experimentally measured one.

3.
J Synchrotron Radiat ; 30(Pt 1): 208-216, 2023 Jan 01.
Artigo em Inglês | MEDLINE | ID: mdl-36601939

RESUMO

The application of fluorescent crystal media in wide-range X-ray detectors provides an opportunity to directly image the spatial distribution of ultra-intense X-ray beams including investigation of the focal spot of free-electron lasers. Here the capabilities of the micro- and nano-focusing X-ray refractive optics available at the High Energy Density instrument of the European XFEL are reported, as measured in situ by means of a LiF fluorescent detector placed into and around the beam caustic. The intensity distribution of the beam focused down to several hundred nanometers was imaged at 9 keV photon energy. A deviation from the parabolic surface in a stack of nanofocusing Be compound refractive lenses (CRLs) was found to affect the resulting intensity distribution within the beam. Comparison of experimental patterns in the far field with patterns calculated for different CRL lens imperfections allowed the overall inhomogeneity in the CRL stack to be estimated. The precise determination of the focal spot size and shape on a sub-micrometer level is essential for a number of high energy density studies requiring either a pin-size backlighting spot or extreme intensities for X-ray heating.

4.
Opt Express ; 30(12): 20980-20998, 2022 Jun 06.
Artigo em Inglês | MEDLINE | ID: mdl-36224830

RESUMO

A real-time and accurate characterization of the X-ray beam size is essential to enable a large variety of different experiments at free-electron laser facilities. Typically, ablative imprints are employed to determine shape and size of µm-focused X-ray beams. The high accuracy of this state-of-the-art method comes at the expense of the time required to perform an ex-situ image analysis. In contrast, diffraction at a curved grating with suitably varying period and orientation forms a magnified image of the X-ray beam, which can be recorded by a 2D pixelated detector providing beam size and pointing jitter in real time. In this manuscript, we compare results obtained with both techniques, address their advantages and limitations, and demonstrate their excellent agreement. We present an extensive characterization of the FEL beam focused to ≈1 µm by two Kirkpatrick-Baez (KB) mirrors, along with optical metrology slope profiles demonstrating their exceptionally high quality. This work provides a systematic and comprehensive study of the accuracy provided by curved gratings in real-time imaging of X-ray beams at a free-electron laser facility. It is applied here to soft X-rays and can be extended to the hard X-ray range. Furthermore, curved gratings, in combination with a suitable detector, can provide spatial properties of µm-focused X-ray beams at MHz repetition rate.

5.
Radiat Res ; 197(2): 131-148, 2022 02 01.
Artigo em Inglês | MEDLINE | ID: mdl-34614193

RESUMO

The development of ultra-intense electron pulse for applications needs to be accompanied by the implementation of a practical dosimetry system. In this study four different systems were investigated as dosimeters for low doses with a very high-dose-rate source. First, the effects of ultra-short pulses were investigated for the yields of the Fricke dosimeter based on acidic solutions of ferrous sulfate; it was established that the yields were not significantly affected by the high dose rates, so the Fricke dosimeter system was used as a reference. Then, aqueous solutions of three compounds as fluorescence chemical dosimeters were utilized, each operated at a different solution pH: terephthalic acid - basic, trimesic acid - acidic, and coumarin-3-carboxylic acid (C3CA) - neutral. Fluorescence chemical dosimeters offer an attractive alternative to chemical dosimeters based on optical absorption for measuring biologically relevant low doses because of their higher sensitivity. The effects of very intense dose rate (TGy/ s) from pulses of fast electrons generated by a picosecond linear accelerator on the chemical yields of fluorescence chemical dosimeters were investigated at low peak doses (<20 Gy) and compared with yields determined under low-dose-rate irradiation from a 60 Co gamma-ray source (mGy/s). For the terephthalate and the trimesic acid dosimeters changes in the yields were not detected within the estimated (∼10%) precision of the experiments, but, due to the complexity of the mechanism of the hydroxyl radical initiated reactions in solutions of the relevant aromatic compounds, significant reductions of the chemical yield (-60%) were observed when the C3CA dosimeter was irradiated with the ultra-short pulses.


Assuntos
Dosímetros de Radiação
6.
Molecules ; 26(22)2021 Nov 12.
Artigo em Inglês | MEDLINE | ID: mdl-34833925

RESUMO

The first soft X-ray laser was put into operation in Livermore (CA, USA) more than three decades ago [...].

7.
Molecules ; 26(21)2021 Nov 05.
Artigo em Inglês | MEDLINE | ID: mdl-34771111

RESUMO

We study the behavior of poly(methyl methacrylate) (PMMA) exposed to femtosecond pulses of extreme ultraviolet and X-ray laser radiation in the single-shot damage regime. The employed microscopic simulation traces induced electron cascades, the thermal energy exchange of electrons with atoms, nonthermal modification of the interatomic potential, and a triggered atomic response. We identify that the nonthermal hydrogen decoupling triggers ultrafast fragmentation of PMMA strains at the absorbed threshold dose of ~0.07 eV/atom. At higher doses, more hydrogen atoms detach from their parental molecules, which, at the dose of ~0.5 eV/atom, leads to a complete separation of hydrogens from carbon and oxygen atoms and fragmentation of MMA molecules. At the dose of ~0.7 eV/atom, the band gap completely collapses indicating that a metallic liquid is formed with complete atomic disorder. An estimated single-shot ablation threshold and a crater depth as functions of fluence agree well with the experimental data collected.

8.
Sci Rep ; 11(1): 17976, 2021 09 09.
Artigo em Inglês | MEDLINE | ID: mdl-34504156

RESUMO

We present a computational case study of X-ray single-particle imaging of hydrated proteins on an example of 2-Nitrogenase-Iron protein covered with water layers of various thickness, using a start-to-end simulation platform and experimental parameters of the SPB/SFX instrument at the European X-ray Free-Electron Laser facility. The simulations identify an optimal thickness of the water layer at which the effective resolution for imaging the hydrated sample becomes significantly higher than for the non-hydrated sample. This effect is lost when the water layer becomes too thick. Even though the detailed results presented pertain to the specific sample studied, the trends which we identify should also hold in a general case. We expect these findings will guide future single-particle imaging experiments using hydrated proteins.


Assuntos
Lasers , Simulação de Dinâmica Molecular , Imagem Molecular/métodos , Oxirredutases/química , Oxirredutases/efeitos da radiação , Água/química , Difração de Raios X/instrumentação , Difração de Raios X/métodos , Raios X/efeitos adversos , Elétrons , Fótons
9.
Astrobiology ; 20(12): 1476-1488, 2020 12.
Artigo em Inglês | MEDLINE | ID: mdl-32955922

RESUMO

Chemical environments of young planets are assumed to be significantly influenced by impacts of bodies lingering after the dissolution of the protoplanetary disk. We explore the chemical consequences of impacts of these bodies under reducing planetary atmospheres dominated by carbon monoxide, methane, and molecular nitrogen. Impacts were simulated by using a terawatt high-power laser system. Our experimental results show that one-pot impact-plasma-initiated synthesis of all the RNA canonical nucleobases and the simplest amino acid glycine is possible in this type of atmosphere in the presence of montmorillonite. This one-pot synthesis begins with de novo formation of hydrogen cyanide (HCN) and proceeds through intermediates such as cyanoacetylene and urea.


Assuntos
Glicina , Cianeto de Hidrogênio , Nucleotídeos , Atmosfera , Meio Ambiente Extraterreno
10.
Opt Express ; 28(18): 25664-25681, 2020 Aug 31.
Artigo em Inglês | MEDLINE | ID: mdl-32906853

RESUMO

Proper diagnostics of intense free-electron laser (FEL) X-ray pulses is indisputably important for experimental data analysis as well as for the protection of beamline optical elements. New challenges for beam diagnostic methods are introduced by modern FEL facilities capable of delivering powerful pulses at megahertz (MHz) repetition rates. In this paper, we report the first characterization of a defocused MHz 13.5-nm beam generated by the free-electron laser in Hamburg (FLASH) using the method of multi-pulse desorption imprints in poly(methyl methacrylate)(PMMA). The beam fluence profile is reconstructed in a novel and highly accurate way that takes into account the nonlinear response of material removal to total dose delivered by multiple pulses. The algorithm is applied to experimental data of single-shot ablation imprints and multi-shot desorption imprints at both low (10 Hz) and high (1 MHz) repetition rates. Reconstructed response functions show a great agreement with the theoretical desorption response function model.

11.
Chemistry ; 26(52): 12075-12080, 2020 Sep 16.
Artigo em Inglês | MEDLINE | ID: mdl-32293757

RESUMO

Terrestrial volcanism has been one of the dominant geological forces shaping our planet since its earliest existence. Its associated phenomena, like atmospheric lightning and hydrothermal activity, provide a rich energy reservoir for chemical syntheses. Based on our laboratory simulations, we propose that on the early Earth volcanic activity inevitably led to a remarkable production of formic acid through various independent reaction channels. Large-scale availability of atmospheric formic acid supports the idea of the high-temperature accumulation of formamide in this primordial environment.

12.
Radiat Res ; 193(4): 372-382, 2020 04.
Artigo em Inglês | MEDLINE | ID: mdl-32097100

RESUMO

A standard Fricke dosimeter was used to measure the absorbed dose via the oxidation yields of Fe3+ ions in an aqueous environment induced by soft X rays within the "water window" spectral range. We also exploited the property of a neutral solution containing terephthalic acid as a tool for selective detection of OH radicals. Both dosimetric systems were irradiated using the experimental pulsed laser-plasma soft X-ray source as well as conventional 1.25-MeV gamma rays. Radiation chemical yields of Fe3+ ions and OH radicals were determined to be (5.13 ± 0.94) × 10-1 µmol·J-1 (4.95 ± 0.91 100eV-1) and (2.33 ± 0.35) × 10-2 µmol·J-1 (0.23 ± 0.03 100eV-1), respectively. Measurements were supported by Monte Carlo simulations to estimate the linear energy transfer of the water window radiation. The simulation results are in good agreement with expected linear energy transfer of ions inducing the same Fe3+ ion and OH radical radiation chemical yield.


Assuntos
Radical Hidroxila/química , Ferro/química , Radiometria , Raios X/efeitos adversos , Raios gama/efeitos adversos , Humanos , Radical Hidroxila/efeitos da radiação , Íons/química , Transferência Linear de Energia , Método de Monte Carlo , Oxirredução , Água/química
13.
Opt Express ; 26(15): 19665-19685, 2018 Jul 23.
Artigo em Inglês | MEDLINE | ID: mdl-30114137

RESUMO

Ruthenium is a perspective material to be used for XUV mirrors at free-electron laser facilities. Yet, it is still poorly studied in the context of ultrafast laser-matter interaction. In this work, we present single-shot damage studies of thin Ru films irradiated by femtosecond XUV free-electron laser pulses at FLASH. Ex-situ analysis of the damaged spots, performed by different types of microscopy, shows that the weakest detected damage is surface roughening. For higher fluences we observe ablation of Ru. Combined simulations using Monte-Carlo code XCASCADE(3D) and the two-temperature model reveal that the damage mechanism is photomechanical spallation, similar to the case of irradiating the target with optical lasers. The analogy with the optical damage studies enables us to explain the observed damage morphologies.

14.
Radiat Res ; 189(5): 466-476, 2018 05.
Artigo em Inglês | MEDLINE | ID: mdl-29505347

RESUMO

In this study, we examined dose-rate effects on strand break formation in plasmid DNA induced by pulsed extreme ultraviolet (XUV) radiation. Dose delivered to the target molecule was controlled by attenuating the incident photon flux using aluminum filters as well as by changing the DNA/buffer-salt ratio in the irradiated sample. Irradiated samples were examined using agarose gel electrophoresis. Yields of single- and double-strand breaks (SSBs and DSBs) were determined as a function of the incident photon fluence. In addition, electrophoresis also revealed DNA cross-linking. Damaged DNA was inspected by means of atomic force microscopy (AFM). Both SSB and DSB yields decreased with dose rate increase. Quantum yields of SSBs at the highest photon fluence were comparable to yields of DSBs found after synchrotron irradiation. The average SSB/DSB ratio decreased only slightly at elevated dose rates. In conclusion, complex and/or clustered damages other than cross-links do not appear to be induced under the radiation conditions applied in this study.


Assuntos
Quebras de DNA/efeitos da radiação , Raios Ultravioleta/efeitos adversos , Relação Dose-Resposta à Radiação , Plasmídeos/genética
15.
J Synchrotron Radiat ; 25(Pt 1): 77-84, 2018 Jan 01.
Artigo em Inglês | MEDLINE | ID: mdl-29271755

RESUMO

The durability of grazing- and normal-incidence optical coatings has been experimentally assessed under free-electron laser irradiation at various numbers of pulses up to 16 million shots and various fluence levels below 10% of the single-shot damage threshold. The experiment was performed at FLASH, the Free-electron LASer in Hamburg, using 13.5 nm extreme UV (EUV) radiation with 100 fs pulse duration. Polycrystalline ruthenium and amorphous carbon 50 nm thin films on silicon substrates were tested at total external reflection angles of 20° and 10° grazing incidence, respectively. Mo/Si periodical multilayer structures were tested in the Bragg reflection condition at 16° off-normal angle of incidence. The exposed areas were analysed post-mortem using differential contrast visible light microscopy, EUV reflectivity mapping and scanning X-ray photoelectron spectroscopy. The analysis revealed that Ru and Mo/Si coatings exposed to the highest dose and fluence level show a few per cent drop in their EUV reflectivity, which is explained by EUV-induced oxidation of the surface.

16.
Phys Chem Chem Phys ; 19(43): 29402-29408, 2017 Nov 08.
Artigo em Inglês | MEDLINE | ID: mdl-29075688

RESUMO

Formation yields of ˙OH radicals were precisely determined in aqueous solutions of coumarin-3-carboxylic acid and ferrous sulfate (i.e., Fricke dosimeter) exposed to 253.7 nm radiation delivered from a continuous source. Quantum yield of ˙OH radicals was determined as ∼0.08, i.e., roughly one out of twelve photons, efficiently absorbed in UV-illuminated solutions, produced one ˙OH radical. Energetically, a water molecule should undergo a correlated action of at least two 4.9 eV photons delivering enough energy for direct H-OH dissociation (5.0-5.4 eV). We suggest a mechanism based on an interaction of two water molecules, both in long-living triplet states. An intermolecular transfer of excitation energy provided a sufficient amount of energy for the dissociation of one water molecule into ˙OH and H˙ radicals. In an aqueous solution of phospholipids, quantum yields of hydroperoxides formed under these irradiation conditions decreased with total effectively absorbed energy (i.e. a dose), similar to the radiation chemical yields obtained during an exposure to ionizing radiation, such as gamma rays from radionuclide sources. Under 253.7 nm irradiation, one ˙OH radical causes a peroxidation of 34 phospholipid molecules. This implicates chain mechanism of the reaction.

17.
Radiat Environ Biophys ; 56(3): 241-247, 2017 08.
Artigo em Inglês | MEDLINE | ID: mdl-28500389

RESUMO

The effects of different types of radiation on the formation of peroxide forms of 2-dioleoyl-sn-glycero-3-phosphocholine were studied under various conditions. For the irradiation, an aqueous solution of small unilamellar vesicles was prepared. Variations in parameters such as the dose rate and molecular oxygen saturation levels were evaluated. Our study suggests that the mechanism of the peroxides formation process remains unchanged under irradiation by accelerated electrons, gamma and accelerated protons. The values of radiation chemical yields of the peroxidic form depend on the type of radiation, dose rate, and the saturation of molecular oxygen. The level of oxygen saturation strongly affects the values of radiation chemical yields as well, as the dissolved oxygen is an important agent participating in peroxidation and it is a source of free radicals during the radiolysis. The values of radiation chemical yields strongly suggest that the mechanism of radiation-induced peroxidation of phosphatidylcholines does not proceed via chain reaction.


Assuntos
Oxigênio/metabolismo , Fosfolipídeos/metabolismo , Relação Dose-Resposta à Radiação , Elétrons , Peróxidos Lipídicos/metabolismo , Prótons
18.
Phys Chem Chem Phys ; 18(39): 27317-27325, 2016 Oct 05.
Artigo em Inglês | MEDLINE | ID: mdl-27722540

RESUMO

Large-scale plasma was created in gas mixtures containing methane using high-power laser-induced dielectric breakdown (LIDB). The composition of the mixtures corresponded to a cometary and/or meteoritic impact into the early atmosphere of either Titan or Earth. A multiple-centimeter-sized fireball was created by focusing a single 100 J, 450 ps near-infrared laser pulse into the center of a 15 L gas cell. The excited reaction intermediates formed during the various stages of the LIDB plasma chemical evolution were investigated using optical emission spectroscopy (OES) with temporal resolution. The chemical consequences of laser-produced plasma generation in a CH4-N2-H2O mixture were investigated using high resolution Fourier-transform infrared absorption spectroscopy (FTIR) and gas selected ion flow tube spectrometry (SIFT). Several simple inorganic and organic compounds were identified in the reaction mixture exposed to ten laser sparks. Deuterated water (D2O) in a gas mixture was used to separate several of the produced isotopomers of acetylene, which were then quantified using the FTIR technique.

19.
Opt Express ; 24(14): 15468-77, 2016 Jul 11.
Artigo em Inglês | MEDLINE | ID: mdl-27410821

RESUMO

The role played by heat accumulation in multi-shot damage of silicon was studied. Bulk silicon samples were exposed to intense XUV monochromatic radiation of a 13.5 nm wavelength in a series of 400 femtosecond pulses, repeated with a 1 MHz rate (pulse trains) at the FLASH facility in Hamburg. The observed surface morphological and structural modifications are formed as a result of sample surface melting. Modifications are threshold dependent on the mean fluence of the incident pulse train, with all threshold values in the range of approximately 36-40 mJ/cm2. Experimental data is supported by a theoretical model described by the heat diffusion equation. The threshold for reaching the melting temperature (45 mJ/cm2) and liquid state (54 mJ/cm2), estimated from this model, is in accordance with experimental values within measurement error. The model indicates a significant role of heat accumulation in surface modification processes.

20.
Radiat Environ Biophys ; 54(3): 343-52, 2015 Aug.
Artigo em Inglês | MEDLINE | ID: mdl-26007308

RESUMO

Clustered DNA damage induced by 10, 20 and 30 MeV protons in pBR322 plasmid DNA was investigated. Besides determination of strand breaks, additional lesions were detected using base excision repair enzymes. The plasmid was irradiated in dry form, where indirect radiation effects were almost fully suppressed, and in water solution containing only minimal residual radical scavenger. Simultaneous irradiation of the plasmid DNA in the dry form and in the solution demonstrated the contribution of the indirect effect as prevalent. The damage composition slightly differed when comparing the results for liquid and dry samples. The obtained data were also subjected to analysis concerning different methodological approaches, particularly the influence of irradiation geometry, models used for calculation of strand break yields and interpretation of the strand breaks detected with the enzymes. It was shown that these parameters strongly affect the results.


Assuntos
Dano ao DNA , Plasmídeos/efeitos da radiação , Prótons/efeitos adversos , Quebras de DNA de Cadeia Dupla , Enzimas Reparadoras do DNA/metabolismo , Relação Dose-Resposta à Radiação , Eletroforese em Gel de Ágar , Raios gama/efeitos adversos , Transferência Linear de Energia , Modelos Biológicos , Plasmídeos/metabolismo , Soluções
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA