Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 7 de 7
Filtrar
Mais filtros








Base de dados
Intervalo de ano de publicação
1.
J Am Chem Soc ; 141(17): 6937-6945, 2019 May 01.
Artigo em Inglês | MEDLINE | ID: mdl-30951295

RESUMO

Carbon nanothreads are a new one-dimensional sp3-bonded nanomaterial of CH stoichiometry synthesized from benzene at high pressure and room temperature by slow solid-state polymerization. The resulting threads assume crystalline packing hundreds of micrometers across. We show high-resolution electron microscopy (HREM) images of hexagonal arrays of well-aligned thread columns that traverse the 80-100 nm thickness of the prepared sample. Diffuse scattering in electron diffraction reveals that nanothreads are packed with axial and/or azimuthal disregistry between them. Layer lines in diffraction from annealed nanothreads provide the first evidence of translational order along their length, indicating that this solid-state reaction proceeds with some regularity. HREM also reveals bends and defects in nanothread crystals that can contribute to the broadening of their diffraction spots, and electron energy-loss spectroscopy confirms them to be primarily sp3-hybridized, with less than 27% sp2 carbon, most likely associated with partially saturated "degree-4" threads.

2.
J Am Chem Soc ; 140(24): 7658-7666, 2018 06 20.
Artigo em Inglês | MEDLINE | ID: mdl-29808673

RESUMO

Carbon nanothreads are a new type of one-dimensional sp3-carbon nanomaterial formed by slow compression and decompression of benzene. We report characterization of the chemical structure of 13C-enriched nanothreads by advanced quantitative, selective, and two-dimensional solid-state nuclear magnetic resonance (NMR) experiments complemented by infrared (IR) spectroscopy. The width of the NMR spectral peaks suggests that the nanothread reaction products are much more organized than amorphous carbon. In addition, there is no evidence from NMR of a second phase such as amorphous mixed sp2/sp3-carbon. Spectral editing reveals that almost all carbon atoms are bonded to one hydrogen atom, unlike in amorphous carbon but as is expected for enumerated nanothread structures. Characterization of the local bonding structure confirms the presence of pure fully saturated "degree-6" carbon nanothreads previously deduced on the basis of crystal packing considerations from diffraction and transmission electron microscopy. These fully saturated threads comprise between 20% and 45% of the sample. Furthermore, 13C-13C spin exchange experiments indicate that the length of the fully saturated regions of the threads exceeds 2.5 nm. Two-dimensional 13C-13C NMR spectra showing bonding between chemically nonequivalent sites rule out enumerated single-site thread structures such as polytwistane or tube (3,0) but are consistent with multisite degree-6 nanothreads. Approximately a third of the carbon is in "degree-4" nanothreads with isolated double bonds. The presence of doubly unsaturated degree-2 benzene polymers can be ruled out on the basis of 13C-13C NMR with spin exchange rate constants tuned by rotational resonance and 1H decoupling. A small fraction of the sample consists of aromatic rings within the threads that link sections with mostly saturated bonding. NMR provides the detailed bonding information necessary to refine solid-state organic synthesis techniques to produce pure degree-6 or degree-4 carbon nanothreads.

3.
J Am Chem Soc ; 140(15): 4969-4972, 2018 04 18.
Artigo em Inglês | MEDLINE | ID: mdl-29569919

RESUMO

Carbon nanothreads are a new one-dimensional sp3 carbon nanomaterial. They assemble into hexagonal crystals in a room temperature, nontopochemical solid-state reaction induced by slow compression of benzene to 23 GPa. Here we show that pyridine also reacts under compression to form a well-ordered sp3 product: C5NH5 carbon nitride nanothreads. Solid pyridine has a different crystal structure from solid benzene, so the nontopochemical formation of low-dimensional crystalline solids by slow compression of small aromatics may be a general phenomenon that enables chemical design of properties. The nitrogen in the carbon nitride nanothreads may improve processability, alters photoluminescence, and is predicted to reduce the bandgap.

4.
J Phys Chem A ; 122(11): 2858-2863, 2018 Mar 22.
Artigo em Inglês | MEDLINE | ID: mdl-29432685

RESUMO

Tetracyanomethane, C(CN)4, is a tetrahedral molecule containing a central sp3 carbon that is coordinated by reactive nitrile groups that could potentially transform to an extended CN network with a significant fraction of sp3 carbon. High-purity C(CN)4 was synthesized, and its physiochemical behavior was studied using in situ synchrotron angle-dispersive powder X-ray diffraction (PXRD) and Raman and infrared (IR) spectroscopies in a diamond anvil cell (DAC) up to 21 GPa. The pressure dependence of the fundamental vibrational modes associated with the molecular solid was determined, and some low-frequency Raman modes are reported for the first time. Crystalline molecular C(CN)4 starts to polymerize above ∼7 GPa and transforms into an interconnected disordered network, which is recoverable to ambient conditions. The results demonstrate feasibility for the pressure-induced polymerization of molecules with premeditated functionality.

5.
Sci Adv ; 3(6): e1603213, 2017 06.
Artigo em Inglês | MEDLINE | ID: mdl-28630918

RESUMO

Carbon's unique ability to have both sp2 and sp3 bonding states gives rise to a range of physical attributes, including excellent mechanical and electrical properties. We show that a series of lightweight, ultrastrong, hard, elastic, and conductive carbons are recovered after compressing sp2-hybridized glassy carbon at various temperatures. Compression induces the local buckling of graphene sheets through sp3 nodes to form interpenetrating graphene networks with long-range disorder and short-range order on the nanometer scale. The compressed glassy carbons have extraordinary specific compressive strengths-more than two times that of commonly used ceramics-and simultaneously exhibit robust elastic recovery in response to local deformations. This type of carbon is an optimal ultralight, ultrastrong material for a wide range of multifunctional applications, and the synthesis methodology demonstrates potential to access entirely new metastable materials with exceptional properties.

7.
Inorg Chem ; 55(17): 8943-50, 2016 09 06.
Artigo em Inglês | MEDLINE | ID: mdl-27532223

RESUMO

Phase-pure samples of a metastable allotrope of silicon, Si-III or BC8, were synthesized by direct elemental transformation at 14 GPa and ∼900 K and also at significantly reduced pressure in the Na-Si system at 9.5 GPa by quenching from high temperatures ∼1000 K. Pure sintered polycrystalline ingots with dimensions ranging from 0.5 to 2 mm can be easily recovered at ambient conditions. The chemical route also allowed us to decrease the synthetic pressures to as low as 7 GPa, while pressures required for direct phase transition in elemental silicon are significantly higher. In situ control of the synthetic protocol, using synchrotron radiation, allowed us to observe the underlying mechanism of chemical interactions and phase transformations in the Na-Si system. Detailed characterization of Si-III using X-ray diffraction, Raman spectroscopy, (29)Si NMR spectroscopy, and transmission electron microscopy are discussed. These large-volume syntheses at significantly reduced pressures extend the range of possible future bulk characterization methods and applications.

SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA