Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 23
Filtrar
Mais filtros








Base de dados
Intervalo de ano de publicação
1.
Appl Environ Microbiol ; 87(23): e0129221, 2021 11 10.
Artigo em Inglês | MEDLINE | ID: mdl-34550764

RESUMO

The lactic acid bacterium Streptococcus thermophilus was believed to display only two distinct proteases at the cell surface, namely, the cell envelope protease PrtS and the housekeeping protease HtrA. Using peptidomics, we demonstrate here the existence of an additional active cell surface protease, which shares significant homology with the SepM protease of Streptococcus mutans. Although all three proteases-PrtS, HtrA, and SepM-are involved in the turnover of surface proteins, they demonstrate distinct substrate specificities. In particular, SepM cleaves proteins involved in cell wall metabolism and cell elongation, and its inactivation has consequences for cell morphology. When all three proteases are inactivated, the residual cell-surface proteolysis of S. thermophilus is approximately 5% of that of the wild-type strain. IMPORTANCE Streptococcus thermophilus is a lactic acid bacterium used widely as a starter in the dairy industry. Due to its "generally recognized as safe" status and its weak cell surface proteolytic activity, it is also considered a potential bacterial vector for heterologous protein production. Our identification of a new cell surface protease made it possible to construct a mutant strain with a 95% reduction in surface proteolysis, which could be useful in numerous biotechnological applications.


Assuntos
Proteínas de Bactérias/genética , Peptídeo Hidrolases , Streptococcus thermophilus , Peptídeo Hidrolases/genética , Proteólise , Streptococcus thermophilus/enzimologia , Streptococcus thermophilus/genética
2.
Genes (Basel) ; 11(9)2020 09 19.
Artigo em Inglês | MEDLINE | ID: mdl-32961685

RESUMO

In streptococci, intracellular quorum sensing pathways are based on quorum-sensing systems that are responsible for peptide secretion, maturation, and reimport. These peptides then interact with Rgg or ComR transcriptional regulators in the Rap, Rgg, NprR, PlcR, and PrgX (RRNPP) family, whose members are found in Gram-positive bacteria. Short hydrophobic peptides (SHP) interact with Rgg whereas ComS peptides interact with ComR regulators. To date, in Streptococcus thermophilus, peptide secretion, maturation, and extracellular fate have received little attention, even though this species has several (at least five) genes encoding Rgg regulators and one encoding a ComR regulator. We studied pheromone export in this species, focusing our attention on PptAB, which is an exporter of signaling peptides previously identified in Enterococcus faecalis, pathogenic streptococci and Staphylococcus aureus. In the S. thermophilus strain LMD-9, we showed that PptAB controlled three regulation systems, two SHP/Rgg systems (SHP/Rgg1358 and SHP/Rgg1299), and the ComS/ComR system, while using transcriptional fusions and that PptAB helped to produce and export at least three different mature SHPs (SHP1358, SHP1299, and SHP279) peptides while using liquid chromatography-tandem mass spectrometry (LC-MS/MS). Using a deep sequencing approach (RNAseq), we showed that the exporter PptAB, the membrane protease Eep, and the oligopeptide importer Ami controlled the transcription of the genes that were located downstream from the five non-truncated rgg genes as well as few distal genes. This led us to propose that the five non-truncated shp/rgg loci were functional. Only three shp genes were expressed in our experimental condition. Thus, this transcriptome analysis also highlighted the complex interconnected network that exists between SHP/Rgg systems, where a few homologous signaling peptides likely interact with different regulators.


Assuntos
Transportadores de Cassetes de Ligação de ATP/metabolismo , Proteínas de Bactérias/metabolismo , Fragmentos de Peptídeos/metabolismo , Proteoma/análise , Percepção de Quorum , Streptococcus thermophilus/metabolismo , Transcriptoma , Transportadores de Cassetes de Ligação de ATP/genética , Proteínas de Bactérias/genética , Cromatografia Líquida , Regulação Bacteriana da Expressão Gênica , Streptococcus thermophilus/genética , Streptococcus thermophilus/crescimento & desenvolvimento , Espectrometria de Massas em Tandem
3.
Appl Environ Microbiol ; 86(22)2020 10 28.
Artigo em Inglês | MEDLINE | ID: mdl-32769193

RESUMO

Peptides present in growth media are essential for nitrogen nutrition and optimal growth of lactic acid bacteria. In addition, according to their amino acid composition, they can also directly or indirectly play regulatory roles and influence global metabolism. This is especially relevant during the propagation phase to produce high cell counts of active lactic acid bacteria used as starters in the dairy industry. In the present work, we aimed at investigating how the respective compositions of two different yeast extracts, with a specific focus on peptide content, influenced Streptococcus thermophilus metabolism during growth under pH-controlled conditions. In addition to free amino acid quantification, we used a multi-omics approach (peptidomics, proteomics, and transcriptomics) to identify peptides initially present in the two culture media and to follow S. thermophilus gene expression and bacterial protein production during growth. The free amino acid and peptide compositions of the two yeast extracts differed qualitatively and quantitatively. Nevertheless, the two yeast extracts sustained similar levels of growth of S. thermophilus and led to equivalent final biomasses. However, transcriptomics and proteomics showed differential gene expression and protein production in several S. thermophilus metabolic pathways, especially amino acid, citrate, urease, purine, and pyrimidine metabolisms. The probable role of the regulator CodY is discussed in this context. Moreover, we observed significant differences in the production of regulators and of a quorum sensing regulatory system. The possible roles of yeast extract peptides on the modulation of the quorum sensing system expression are evaluated.IMPORTANCE Improving the performance and industrial robustness of bacteria used in fermentations and food industry remains a challenge. We showed here that two Streptococcus thermophilus fermentations, performed with the same strain in media that differ only by their yeast extract compositions and, more especially, their peptide contents, led to similar growth kinetics and final biomasses, but several genes and proteins were differentially expressed/produced. In other words, subtle variations in peptide composition of the growth medium can finely tune the metabolism status of the starter. Our work, therefore, suggests that acting on growth medium components and especially on their peptide content, we could modulate bacterial metabolism and produce bacteria differently programmed for further purposes. This might have applications for preparing active starter cultures.


Assuntos
Proteínas de Bactérias/metabolismo , Proteínas Fúngicas/metabolismo , Expressão Gênica , Peptídeos/metabolismo , Saccharomyces cerevisiae/química , Streptococcus thermophilus/metabolismo , Fermentação , Proteínas Fúngicas/administração & dosagem , Expressão Gênica/efeitos dos fármacos , Peptídeos/administração & dosagem , Percepção de Quorum , Streptococcus thermophilus/efeitos dos fármacos
4.
Front Microbiol ; 10: 906, 2019.
Artigo em Inglês | MEDLINE | ID: mdl-31133999

RESUMO

Streptococcus thermophilus, an extensively used lactic starter, is generally produced in yeast extract-based media containing a complex mixture of peptides whose exact composition remains elusive. In this work, we aimed at investigating the peptide content of a commercial yeast extract (YE) and identifying dynamics of peptide utilization during the growth of the industrial S. thermophilus N4L strain, cultivated in 1 l bioreactors under pH-regulation. To reach that goal, we set up a complete analytical workflow based on mass spectrometry (peptidomics). About 4,600 different oligopeptides ranging from 6 to more than 30 amino acids in length were identified during the time-course of the experiment. Due to the low spectral abundance of individual peptides, we performed a clustering approach to decipher the rules of peptide utilization during fermentation. The physicochemical characteristics of consumed peptides perfectly matched the known affinities of the oligopeptide transport system of S. thermophilus. Moreover, by analyzing such a large number of peptides, we were able to establish that peptide net charge is the major factor for oligopeptide transport in S. thermophilus N4L.

5.
Artigo em Inglês | MEDLINE | ID: mdl-30533920

RESUMO

Streptococcus thermophilus is one of the most used dairy starters for the production of yogurt and cheese. We report here the complete genome sequence of the industrial strain S. thermophilus N4L, which is used in dairy technology for its fast-acidifying phenotype.

6.
J Proteome Res ; 15(9): 3214-24, 2016 09 02.
Artigo em Inglês | MEDLINE | ID: mdl-27439475

RESUMO

We report here the use of a peptidomic approach to revisit the extracellular proteolysis of Lactococcus lactis. More than 1800 distinct peptides accumulate externally during growth of the plasmid-free protease-negative strain L. lactis IL1403 in a protein- and peptide-free medium. These peptides mainly originate from cell-surface- and cytoplasmic-located proteins, despite the fact that no cell lysis could be evidenced. Positioning each identified peptide on its parental protein sequence demonstrated the involvement of exo- and endopeptidase activities. The endopeptidases responsible for the release of surface and cytoplasmic peptides had distinct specificities. The membrane-anchored protease HtrA was responsible for the release of only a part of the surface peptides, and its preference for branched-chain amino acids in the N-terminal side of the cleaved bond was established in situ. Other yet uncharacterized surface proteases were also involved. Several lines of evidence suggest that surface and cytoplasmic peptides were produced by different routes, at least part of the latter being most likely excreted as peptides from the cells. The mechanism by which these cytoplasmic peptides are excreted remains an open question, as it is still the case for excreted cytoplasmic proteins.


Assuntos
Peptídeos/metabolismo , Proteólise , Proteômica/métodos , Aminoácidos de Cadeia Ramificada/metabolismo , Proteínas de Bactérias/metabolismo , Membrana Celular/enzimologia , Citoplasma/enzimologia , Espectrometria de Massas , Peptídeo Hidrolases/metabolismo , Peptídeos/análise , Serina Endopeptidases/metabolismo
7.
Mol Microbiol ; 102(1): 81-91, 2016 10.
Artigo em Inglês | MEDLINE | ID: mdl-27328751

RESUMO

Aerobic respiration metabolism in Group B Streptococcus (GBS) is activated by exogenous heme and menaquinone. This capacity enhances resistance of GBS to acid and oxidative stress and improves its survival. In this work, we discovered that GBS is able to respire in the presence of heme and 1,4-dihydroxy-2-naphthoic acid (DHNA). DHNA is a biosynthetic precursor of demethylmenaquinone (DMK) in many bacterial species. A GBS gene (gbs1789) encodes a homolog of the MenA 1,4-dihydroxy-2-naphthoate prenyltransferase enzyme, involved in the synthesis of demethylmenaquinone. In this study, we showed that gbs1789 is involved in the biosynthesis of long-chain demethylmenaquinones (DMK-10). The Δgbs1789 mutant cannot respire in the presence of heme and DHNA, indicating that endogenously synthesized DMKs are cofactors of the GBS respiratory chain. We also found that isoprenoid side chains from GBS DMKs are produced by the protein encoded by the gbs1783 gene, since this gene can complement an Escherichia coli ispB mutant defective for isoprenoids chain synthesis. In the gut or vaginal microbiote, where interspecies metabolite exchanges occur, this partial DMK biosynthetic pathway can be important for GBS respiration and survival in different niches.


Assuntos
Benzoquinonas/metabolismo , Streptococcus agalactiae/metabolismo , Vitamina K 2/metabolismo , Vias Biossintéticas , Heme/metabolismo , Redes e Vias Metabólicas , Naftóis/metabolismo , Naftóis/farmacologia , Streptococcus agalactiae/genética , Vitamina K 2/análogos & derivados
8.
Crit Rev Microbiol ; 42(3): 339-51, 2016 May.
Artigo em Inglês | MEDLINE | ID: mdl-25198780

RESUMO

Within Gram-positive bacteria, the expression of target genes is controlled at the population level via signaling peptides, also known as pheromones. Pheromones control a wide range of functions, including competence, virulence, and others that remain unknown. Until now, their role in bacterial gene regulation has probably been underestimated; indeed, bacteria are able to produce, by ribosomal synthesis or surface protein degradation, an extraordinary variety of peptides which are released outside bacteria and among which, some are pheromones that mediate cell-to-cell communication. The review aims at giving an updated overview of these peptide-dependant communication pathways. More specifically, it follows the whole peptide circuit from the peptide production and secretion in the extracellular medium to its interaction with sensors at bacterial surface or re-import into the bacteria where it plays its regulation role. In recent years, as we have accumulated more knowledge about these systems, it has become apparent that they are more complex than they first appeared. For this reason, more research on peptide-dependant pathways is needed to develop new strategies for controlling functions of interest in Gram-positive bacteria. In particular, such research could lead to alternatives to the use of antibiotics against pathogenic bacteria. In perspective, the review identifies new research questions that emerge in this field and that have to be addressed.


Assuntos
Bactérias Gram-Positivas/metabolismo , Peptídeos/metabolismo , Proteínas de Bactérias/genética , Proteínas de Bactérias/metabolismo , Regulação Bacteriana da Expressão Gênica , Bactérias Gram-Positivas/genética
9.
PLoS One ; 7(12): e50989, 2012.
Artigo em Inglês | MEDLINE | ID: mdl-23236417

RESUMO

The genome of Lactococcus lactis strain IL1403 harbors a putative pilus biogenesis cluster consisting of a sortase C gene flanked by 3 LPxTG protein encoding genes (yhgD, yhgE, and yhhB), called here pil. However, pili were not detected under standard growth conditions. Over-expression of the pil operon resulted in production and display of pili on the surface of lactococci. Functional analysis of the pilus biogenesis machinery indicated that the pilus shaft is formed by oligomers of the YhgE pilin, that the pilus cap is formed by the YhgD pilin and that YhhB is the basal pilin allowing the tethering of the pilus fibers to the cell wall. Oligomerization of pilin subunits was catalyzed by sortase C while anchoring of pili to the cell wall was mediated by sortase A. Piliated L. lactis cells exhibited an auto-aggregation phenotype in liquid cultures, which was attributed to the polymerization of major pilin, YhgE. The piliated lactococci formed thicker, more aerial biofilms compared to those produced by non-piliated bacteria. This phenotype was attributed to oligomers of YhgE. This study provides the first dissection of the pilus biogenesis machinery in a non-pathogenic Gram-positive bacterium. Analysis of natural lactococci isolates from clinical and vegetal environments showed pili production under standard growth conditions. The identification of functional pili in lactococci suggests that the changes they promote in aggregation and biofilm formation may be important for the natural lifestyle as well as for applications in which these bacteria are used.


Assuntos
Biofilmes/crescimento & desenvolvimento , Fímbrias Bacterianas/metabolismo , Lactococcus lactis/metabolismo , Aminoaciltransferases/genética , Aminoaciltransferases/metabolismo , Proteínas de Bactérias/genética , Proteínas de Bactérias/metabolismo , Parede Celular/genética , Parede Celular/metabolismo , Cisteína Endopeptidases/genética , Cisteína Endopeptidases/metabolismo , Proteínas de Fímbrias/genética , Proteínas de Fímbrias/metabolismo , Fímbrias Bacterianas/genética , Lactococcus lactis/genética
10.
Microbiology (Reading) ; 157(Pt 6): 1612-1619, 2011 Jun.
Artigo em Inglês | MEDLINE | ID: mdl-21393368

RESUMO

Lactococcus lactis is known to take up extracellular peptides via at least three distinct peptide transporters. The well-described oligopeptide transporter Opp alone is able to ensure the growth of L. lactis in milk, while the di- and tripeptide transporter DtpT is involved in a peptide-dependent signalling mechanism. The oligopeptide Opt transporter displays two peptide-binding proteins, OptA and OptS. We previously demonstrated that OptA-dependent transport is dedicated to nutritional peptides, as an optABCDF mutant (of a strain devoid of Opp) has an impaired capacity to grow in milk. Using isogenic peptide transport mutants, this study shows that biosynthesis of the Opt transporter is much less sensitive to downregulation that is dependent on extracellular peptides taken up by DtpT than is Opp biosynthesis; this peptide-dependent regulation relies on the transcriptional repressor CodY. We demonstrate the dual function of the Opt system; while OptA contributes to the bacterial nutrition during growth in milk, OptS is involved in the transport of signalling peptides derived from milk and controlling opp expression. So, these results shed new light on the peptide-dependent regulation relying on two peptide transporters with different specificities: DtpT and Opt (via OptS).


Assuntos
Transportadores de Cassetes de Ligação de ATP/metabolismo , Proteínas de Bactérias/metabolismo , Oligopeptídeos/metabolismo , Transportadores de Cassetes de Ligação de ATP/genética , Animais , Proteínas de Bactérias/genética , Regulação Bacteriana da Expressão Gênica , Lactococcus lactis/genética , Lactococcus lactis/crescimento & desenvolvimento , Lactococcus lactis/metabolismo , Lactococcus lactis/fisiologia , Proteínas de Membrana Transportadoras/genética , Proteínas de Membrana Transportadoras/metabolismo , Leite/microbiologia , Mutação , Transdução de Sinais , Especificidade por Substrato
12.
Mol Microbiol ; 77(5): 1246-60, 2010 Sep.
Artigo em Inglês | MEDLINE | ID: mdl-20662775

RESUMO

The oligopeptide transport systems Opp belong to the nickel/peptide/opine PepT subfamily of ABC-transporters. The opportunist pathogen Staphylococcus aureus encodes four putative Opps and one orphean substrate binding protein Opp5A. Here, we report that the Opp2 permease complex (Opp2BCDF) and Opp5A are involved in nickel uptake and then renamed them NikBCDE and NikA respectively. S. aureus carries also a high-affinity nickel transporter NixA belonging to the NiCoT family of secondary transporters. The activity of these two nickel transporters determine that of urease, a multimeric nickel-dependent enzyme mainly involved in the neutralization of acidic environments. However, only the Nik system was responsible for the neutralization and deposit of pH-dependent crystals in human urine. Inactivation of the nik genes affected bacterial colonization of mouse urinary tract, as well as the 50% infective dose levels compared with the parental and nixA strains. Finally, complementation of the nik mutations restored bacterial colonization. Together, our results suggest a role for the Nik system in the urinary tract infection by S. aureus, probably due to the urease-mediated pH increase of the urine.


Assuntos
Transportadores de Cassetes de Ligação de ATP/metabolismo , Níquel/metabolismo , Infecções Estafilocócicas/microbiologia , Staphylococcus aureus/metabolismo , Staphylococcus aureus/patogenicidade , Infecções Urinárias/microbiologia , Fatores de Virulência/metabolismo , Animais , Técnicas de Inativação de Genes , Teste de Complementação Genética , Camundongos , Virulência
13.
Appl Environ Microbiol ; 75(10): 3355-7, 2009 May.
Artigo em Inglês | MEDLINE | ID: mdl-19286789

RESUMO

Staphylococcus aureus RN6390 presents a diauxic growth in milk, due to amino acid limitation. Inactivation of the oligopeptide permease Opp3 (dedicated to the nitrogen nutrition of the strain) not only affects the growth of the strain but also results in reduced expression levels of three major extracellular proteases.


Assuntos
Proteínas de Bactérias/metabolismo , Regulação Bacteriana da Expressão Gênica , Proteínas de Membrana Transportadoras/metabolismo , Leite/microbiologia , Oligopeptídeos/metabolismo , Staphylococcus aureus/fisiologia , Animais , Proteínas de Bactérias/genética , Contagem de Colônia Microbiana , Proteínas de Membrana Transportadoras/genética , Staphylococcus aureus/crescimento & desenvolvimento
14.
BMC Microbiol ; 8: 22, 2008 Jan 29.
Artigo em Inglês | MEDLINE | ID: mdl-18230145

RESUMO

BACKGROUND: Soya and its derivatives represent nutritionally high quality food products whose major drawback is their high content of alpha-galacto-oligosaccharides. These are not digested in the small intestine due to the natural absence of tissular alpha-galactosidase in mammals. The passage of these carbohydrates to the large intestine makes them available for fermentation by gas-producing bacteria leading to intestinal flatulence. The aim of the work reported here was to assess the ability of alpha-galactosidase-producing lactobacilli to improve the digestibility of alpha-galacto-oligosaccharides in situ. RESULTS: Gnotobiotic rats were orally fed with soy milk and placed in respiratory chambers designed to monitor fermentative gas excretion. The validity of the animal model was first checked using gnotobiotic rats monoassociated with a Clostridium butyricum hydrogen (H2)-producing strain. Ingestion of native soy milk by these rats caused significant H2 emission while ingestion of alpha-galacto-oligosaccharide-free soy milk did not, thus validating the experimental system. When native soy milk was fermented using the alpha-galactosidase-producing Lactobacillus fermentum CRL722 strain, the resulting product failed to induce H2 emission in rats thus validating the bacterial model. When L. fermentum CRL722 was coadministered with native soy milk, a significant reduction (50 %, P = 0.019) in H2 emission was observed, showing that alpha-galactosidase from L. fermentum CRL722 remained active in situ, in the gastrointestinal tract of rats monoassociated with C. butyricum. In human-microbiota associated rats, L. fermentum CRL722 also induced a significant reduction of H2 emission (70 %, P = 0.004). CONCLUSION: These results strongly suggest that L. fermentum alpha-galactosidase is able to partially alleviate alpha-galactosidase deficiency in rats. This offers interesting perspectives in various applications in which lactic acid bacteria could be used as a vector for delivery of digestive enzymes in man and animals.


Assuntos
Microbiologia de Alimentos , Hidrogênio/metabolismo , Limosilactobacillus fermentum , Oligossacarídeos/metabolismo , Probióticos , Leite de Soja/metabolismo , alfa-Galactosidase/metabolismo , Animais , Clostridium butyricum/metabolismo , Fermentação , Vida Livre de Germes , Hidrogênio/análise , Limosilactobacillus fermentum/metabolismo , Masculino , Ratos , Ratos Endogâmicos F344
15.
BMC Microbiol ; 7: 36, 2007 May 02.
Artigo em Inglês | MEDLINE | ID: mdl-17474995

RESUMO

BACKGROUND: The first step in biofilm formation is bacterial attachment to solid surfaces, which is dependent on the cell surface physico-chemical properties. Cell wall anchored proteins (CWAP) are among the known adhesins that confer the adhesive properties to pathogenic Gram-positive bacteria. To investigate the role of CWAP of non-pathogen Gram-positive bacteria in the initial steps of biofilm formation, we evaluated the physico-chemical properties and adhesion to solid surfaces of Lactococcus lactis. To be able to grow in milk this dairy bacterium expresses a cell wall anchored proteinase PrtP for breakdown of milk caseins. RESULTS: The influence of the anchored cell wall proteinase PrtP on microbial surface physico-chemical properties, and consequently on adhesion, was evaluated using lactococci carrying different alleles of prtP. The presence of cell wall anchored proteinase on the surface of lactococcal cells resulted in an increased affinity to solvents with different physico-chemical properties (apolar and Lewis acid-base solvents). These properties were observed regardless of whether the PrtP variant was biologically active or not, and were not observed in strains without PrtP. Anchored PrtP displayed a significant increase in cell adhesion to solid glass and tetrafluoroethylene surfaces. CONCLUSION: Obtained results indicate that exposure of an anchored cell wall proteinase PrtP, and not its proteolytic activity, is responsible for greater cell hydrophobicity and adhesion. The increased bacterial affinity to polar and apolar solvents indicated that exposure of PrtP on lactococcal cell surface could enhance the capacity to exchange attractive van der Waals interactions, and consequently increase their adhesion to different types of solid surfaces and solvents.


Assuntos
Adesinas Bacterianas/fisiologia , Aderência Bacteriana/fisiologia , Biofilmes/crescimento & desenvolvimento , Parede Celular/enzimologia , Cisteína Endopeptidases/fisiologia , Lactococcus lactis/fisiologia , Proteínas de Bactérias/fisiologia , Parede Celular/fisiologia , Fluorocarbonos , Vidro , Interações Hidrofóbicas e Hidrofílicas , Lactococcus lactis/enzimologia , Tensão Superficial
16.
J Bacteriol ; 189(14): 5119-29, 2007 Jul.
Artigo em Inglês | MEDLINE | ID: mdl-17496096

RESUMO

Oligopeptides internalized by oligopeptide permease (Opp) transporters play key roles in bacterial nutrition, signaling, and virulence. To date, two opp operons, opp-1 and opp-2, have been identified in Staphylococcus aureus. Systematic in silico analysis of 11 different S. aureus genomes revealed the existence of two new opp operons, opp-3 and opp-4, plus an opp-5A gene encoding a putative peptide-binding protein. With the exception of opp-4, the opp operons were present in all S. aureus strains. Within a single strain, the different opp operons displayed little sequence similarity and distinct genetic organization. Transcriptional studies showed that opp-1, opp-2, opp-3, and opp-4 operons were polycistronic and that opp-5A is monocistronic. We designed a minimal chemically defined medium for S. aureus RN6390 and showed that all opp genes were expressed but at different levels. Where tested, OppA protein production paralleled transcriptional profiles. opp-3, which encodes proteins most similar to known peptide transport proteins, displayed the highest expression level and was the only transporter to be regulated by specific amino acids, tyrosine and phenylalanine. Defined deletion mutants in one or several peptide permeases were constructed and tested for their capacity to grow in peptide-containing medium. Among the four putative Opp systems, Opp-3 was the only system able to provide oligopeptides for growth, ranging in length from 3 to 8 amino acids. Dipeptides were imported exclusively by DtpT, a proton-driven di- and tripeptide permease. These data provide a first complete inventory of the peptide transport systems opp and dtpT of S. aureus. Among them, the newly identified Opp-3 appears to be the main Opp system supplying the cell with peptides as nutritional sources.


Assuntos
Proteínas de Bactérias/metabolismo , Proteínas de Membrana Transportadoras/metabolismo , Nitrogênio/metabolismo , Staphylococcus aureus/metabolismo , Sequência de Aminoácidos , Proteínas de Bactérias/genética , Proteínas de Bactérias/fisiologia , Western Blotting , Divisão Celular/efeitos dos fármacos , Cromatografia Líquida de Alta Pressão , Regulação Bacteriana da Expressão Gênica/efeitos dos fármacos , Proteínas de Membrana Transportadoras/genética , Proteínas de Membrana Transportadoras/fisiologia , Dados de Sequência Molecular , Mutação , Oligopeptídeos/metabolismo , Oligopeptídeos/farmacologia , Óperon/genética , Fenilalanina/farmacologia , Reação em Cadeia da Polimerase Via Transcriptase Reversa , Staphylococcus aureus/efeitos dos fármacos , Staphylococcus aureus/genética , Tirosina/farmacologia
17.
Microbiology (Reading) ; 151(Pt 6): 1987-1994, 2005 Jun.
Artigo em Inglês | MEDLINE | ID: mdl-15942005

RESUMO

Peptide transport is a crucial step in the growth of Streptococcus thermophilus in protein- or peptide-containing media. The objective of the present work was to determine the specificity of peptide utilization by this widely used lactic acid bacterium. To reach that goal, complementary approaches were employed. The capability of a proteinase-negative S. thermophilus strain to grow in a chemically defined medium containing a mixture of peptides isolated from milk as the source of amino acids was analysed. Peptides were separated into three size classes by ultrafiltration. The strain was able to use peptides up to 3.5 kDa during growth, as revealed by liquid chromatography and mass spectrometry analyses. The same strain was grown in chemically defined medium containing a tryptic digest of casein, and the respective time-course consumption of the peptides during growth was estimated. The ability to consume large peptides (up to 23 residues) was confirmed, as long as they are cationic and hydrophobic. These results were confirmed by peptide transport studies. Extension of the study to 11 other strains revealed that they all shared these preferences.


Assuntos
Lactococcus lactis/metabolismo , Proteínas de Membrana Transportadoras/fisiologia , Streptococcus thermophilus/metabolismo , Caseínas/metabolismo , Proteínas do Leite/metabolismo , Oligopeptídeos/química , Oligopeptídeos/isolamento & purificação , Oligopeptídeos/metabolismo , Peptídeo Hidrolases/genética , Especificidade por Substrato
18.
J Bacteriol ; 187(2): 601-10, 2005 Jan.
Artigo em Inglês | MEDLINE | ID: mdl-15629931

RESUMO

Thiol-disulfide bond balance is generally maintained in bacteria by thioredoxin reductase-thioredoxin and/or glutathione-glutaredoxin systems. Some gram-positive bacteria, including Lactococcus lactis, do not produce glutathione, and the thioredoxin system is presumed to be essential. We constructed an L. lactis trxB1 mutant. The mutant was obtained under anaerobic conditions in the presence of dithiothreitol (DTT). Unexpectedly, the trxB1 mutant was viable without DTT and under aerated static conditions, thus disproving the essentiality of this system. Aerobic growth of the trxB1 mutant did not require glutathione, also ruling out the need for this redox maintenance system. Proteomic analyses showed that known oxidative stress defense proteins are induced in the trxB1 mutant. Two additional effects of trxB1 were not previously reported in other bacteria: (i) induction of proteins involved in fatty acid or menaquinone biosynthesis, indicating that membrane synthesis is part of the cellular response to a redox imbalance, and (ii) alteration of the isoforms of the glycolytic enzyme glyceraldehyde-3-phosphate dehydrogenase (GapB). We determined that the two GapB isoforms in L. lactis differed by the oxidation state of catalytic-site cysteine C152. Unexpectedly, a decrease specific to the oxidized, inactive form was observed in the trxB1 mutant, possibly because of proteolysis of oxidized GapB. This study showed that thioredoxin reductase is not essential in L. lactis and that its inactivation triggers induction of several mechanisms acting at the membrane and metabolic levels. The existence of a novel redox function that compensates for trxB1 deficiency is suggested.


Assuntos
Lactococcus lactis/fisiologia , Tiorredoxina Dissulfeto Redutase/metabolismo , Aerobiose , Proteínas de Bactérias/biossíntese , Proteínas de Bactérias/fisiologia , Membrana Celular/metabolismo , Ditiotreitol , Eletroforese em Gel Bidimensional , Genes Bacterianos , Glutationa , Gliceraldeído-3-Fosfato Desidrogenase (Fosforiladora)/biossíntese , Isoenzimas/biossíntese , Lactococcus lactis/enzimologia , Mutação , Oxirredução , Proteoma , Tiorredoxina Dissulfeto Redutase/genética
19.
Genet Mol Res ; 3(3): 432-40, 2004 Sep 30.
Artigo em Inglês | MEDLINE | ID: mdl-15614733

RESUMO

Human consumption of soy-derived products has been limited by the presence of non-digestible oligosaccharides (NDO), such as the alpha-galactooligosaccharides raffinose and stachyose. Most mammals, including man, lack pancreatic alpha-galactosidase (alpha-Gal), which is necessary for the hydrolysis of these sugars. However, such NDO can be fermented by gas-producing microorganisms present in the cecum and large intestine, which in turn can induce flatulence and other gastrointestinal disorders in sensitive individuals. The use of microorganisms expressing alpha-Gal is a promising solution to the elimination of NDO before they reach the large intestine. In the present study, lactic acid bacteria engineered to degrade NDO have been constructed and are being used as a tool to evaluate this solution. The alpha-Gal structural genes from Lactobacillus plantarum ATCC8014 (previously characterized in our laboratory) and from guar have been cloned and expressed in Lactococcus lactis. The gene products were directed to different bacterial compartments to optimize their possible applications. The alpha-Gal-producing strains are being evaluated for their efficiency in degrading raffinose and stachyose: i) in soymilk fermentation when used as starters and ii) in situ in the upper gastrointestinal tract when administered to animals orally, as probiotic preparations. The expected outcomes and possible complications of this project are discussed.


Assuntos
Digestão , Lactobacillus plantarum/metabolismo , Lactococcus lactis/metabolismo , Oligossacarídeos/metabolismo , Rafinose/metabolismo , Leite de Soja/química , alfa-Galactosidase/genética , Animais , Produtos Fermentados do Leite , Fermentação , Alimentos Geneticamente Modificados , Lactobacillus plantarum/crescimento & desenvolvimento , Lactococcus lactis/crescimento & desenvolvimento , Probióticos , Roedores , alfa-Galactosidase/metabolismo
20.
J Bacteriol ; 186(19): 6492-500, 2004 Oct.
Artigo em Inglês | MEDLINE | ID: mdl-15375130

RESUMO

Growth of Lactococcus lactis in milk depends on the utilization of extracellular peptides. Up to now, oligopeptide uptake was thought to be due only to the ABC transporter Opp. Nevertheless, analysis of several Opp-deficient L. lactis strains revealed the implication of a second oligopeptide ABC transporter, the so-called Opt system. Both transporters are expressed in wild-type strains such as L. lactis SK11 and Wg2, whereas the plasmid-free strains MG1363 and IL-1403 synthesize only Opp and Opt, respectively. The Opt system displays significant differences from the lactococcal Opp system, which made Opt much more closely related to the oligopeptide transporters of streptococci than to the lactococcal Opp system: (i) genetic organization, (ii) peptide uptake specificity, and (iii) presence of two oligopeptide-binding proteins, OptS and OptA. The fact that only OptA is required for nutrition calls into question the function of the second oligopeptide binding protein (Opts). Sequence analysis of oligopeptide-binding proteins from different bacteria prompted us to propose a classification of these proteins in three distinct groups, differentiated by the presence (or not) of precisely located extensions.


Assuntos
Transportadores de Cassetes de Ligação de ATP/fisiologia , Proteínas de Bactérias/fisiologia , Lactococcus lactis/metabolismo , Oligopeptídeos/metabolismo , Sequência de Aminoácidos , Dados de Sequência Molecular
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA