Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 19 de 19
Filtrar
Mais filtros








Base de dados
Intervalo de ano de publicação
1.
Sci Rep ; 14(1): 14177, 2024 06 19.
Artigo em Inglês | MEDLINE | ID: mdl-38898061

RESUMO

Triple negative breast cancers (TNBC) present a poor prognosis primarily due to their resistance to chemotherapy. This resistance is known to be associated with elevated expression of certain anti-apoptotic members within the proteins of the BCL-2 family (namely BCL-xL, MCL-1 and BCL-2). These regulate cell death by inhibiting pro-apoptotic protein activation through binding and sequestration and they can be selectively antagonized by BH3 mimetics. Yet the individual influences of BCL-xL, MCL-1, and BCL-2 on the sensitivity of TNBC cells to chemotherapy, and their regulation by cancer-associated fibroblasts (CAFs), major components of the tumor stroma and key contributors to therapy resistance remain to be delineated. Using gene editing or BH3 mimetics to inhibit anti-apoptotic BCL-2 family proteins in TNBC line MDA-MB-231, we show that BCL-xL and MCL-1 promote cancer cell survival through compensatory mechanisms. This cell line shows limited sensitivity to chemotherapy, in line with the clinical resistance observed in TNBC patients. We elucidate that BCL-xL plays a pivotal role in therapy response, as its depletion or pharmacological inhibition heightened chemotherapy effectiveness. Moreover, BCL-xL expression is associated with chemotherapy resistance in patient-derived tumoroids where its pharmacological inhibition enhances ex vivo response to chemotherapy. In a co-culture model of cancer cells and CAFs, we observe that even in a context where BCL-xL reduced expression renders cancer cells more susceptible to chemotherapy, those in contact with CAFs display reduced sensitivity to chemotherapy. Thus CAFs exert a profound pro-survival effect in breast cancer cells, even in a setting highly favoring cell death through combined chemotherapy and absence of the main actor of chemoresistance, BCL-xL.


Assuntos
Fibroblastos Associados a Câncer , Resistencia a Medicamentos Antineoplásicos , Proteína de Sequência 1 de Leucemia de Células Mieloides , Neoplasias de Mama Triplo Negativas , Proteína bcl-X , Humanos , Neoplasias de Mama Triplo Negativas/tratamento farmacológico , Neoplasias de Mama Triplo Negativas/metabolismo , Neoplasias de Mama Triplo Negativas/genética , Neoplasias de Mama Triplo Negativas/patologia , Proteína bcl-X/metabolismo , Proteína bcl-X/genética , Fibroblastos Associados a Câncer/metabolismo , Fibroblastos Associados a Câncer/efeitos dos fármacos , Linhagem Celular Tumoral , Feminino , Proteína de Sequência 1 de Leucemia de Células Mieloides/metabolismo , Proteína de Sequência 1 de Leucemia de Células Mieloides/genética , Resistencia a Medicamentos Antineoplásicos/genética , Antineoplásicos/farmacologia , Regulação Neoplásica da Expressão Gênica/efeitos dos fármacos , Apoptose/efeitos dos fármacos , Sobrevivência Celular/efeitos dos fármacos , Proteínas Proto-Oncogênicas c-bcl-2/metabolismo , Proteínas Proto-Oncogênicas c-bcl-2/genética , Proteínas Proto-Oncogênicas c-bcl-2/antagonistas & inibidores
2.
Breast Cancer ; 2024 May 22.
Artigo em Inglês | MEDLINE | ID: mdl-38777987

RESUMO

BACKGROUND: Robust molecular subtyping of triple-negative breast cancer (TNBC) is a prerequisite for the success of precision medicine. Today, there is a clear consensus on three TNBC molecular subtypes: luminal androgen receptor (LAR), basal-like immune-activated (BLIA), and basal-like immune-suppressed (BLIS). However, the debate about the robustness of other subtypes is still open. METHODS: An unprecedented number (n = 1942) of TNBC patient data was collected. Microarray- and RNAseq-based cohorts were independently investigated. Unsupervised analyses were conducted using k-means consensus clustering. Clusters of patients were then functionally annotated using different approaches. Prediction of response to chemotherapy and targeted therapies, immune checkpoint blockade, and radiotherapy were also screened for each TNBC subtype. RESULTS: Four TNBC subtypes were identified in the cohort: LAR (19.36%); mesenchymal stem-like (MSL/MES) (17.35%); BLIA (31.06%); and BLIS (32.23%). Regarding the MSL/MES subtype, we suggest renaming it to mesenchymal-like immune-altered (MLIA) to emphasize its specific histological background and nature of immune response. Treatment response prediction results show, among other things, that despite immune activation, immune checkpoint blockade is probably less or completely ineffective in MLIA, possibly caused by mesenchymal background and/or an enrichment in dysfunctional cytotoxic T lymphocytes. TNBC subtyping results were included in the bc-GenExMiner v5.0 webtool ( http://bcgenex.ico.unicancer.fr ). CONCLUSION: The mesenchymal TNBC subtype is characterized by an exhausted and altered immune response, and resistance to immune checkpoint inhibitors. Consensus for molecular classification of TNBC subtyping and prediction of cancer treatment responses helps usher in the era of precision medicine for TNBC patients.

3.
Dis Model Mech ; 17(3)2024 Mar 01.
Artigo em Inglês | MEDLINE | ID: mdl-38506114

RESUMO

Breast cancer stands as the most prevalent malignancy afflicting women. Despite significant advancements in its diagnosis and treatment, breast cancer metastasis continues to be a leading cause of mortality among women. To metastasize, cancer cells face numerous challenges: breaking away from the primary tumor, surviving in the circulation, establishing in a distant location, evading immune detection and, finally, thriving to initiate a new tumor. Each of these sequential steps requires cancer cells to adapt to a myriad of stressors and develop survival mechanisms. In addition, most patients with breast cancer undergo surgical removal of their primary tumor and have various therapeutic interventions designed to eradicate cancer cells. Despite this plethora of attacks and stresses, certain cancer cells not only manage to persist but also proliferate robustly, giving rise to substantial tumors that frequently culminate in the patient's demise. To enhance patient outcomes, there is an imperative need for a deeper understanding of the molecular and cellular mechanisms that empower cancer cells to not only survive but also expand. Herein, we delve into the intrinsic stresses that cancer cells encounter throughout the metastatic journey and the additional stresses induced by therapeutic interventions. We focus on elucidating the remarkable strategies adopted by cancer cells, such as cell-cell clustering and intricate cell-cell communication mechanisms, to ensure their survival.


Assuntos
Neoplasias da Mama , Humanos , Feminino , Neoplasias da Mama/patologia , Comunicação Celular
4.
Genesis ; 62(1): e23568, 2024 Feb.
Artigo em Inglês | MEDLINE | ID: mdl-37946671

RESUMO

Epithelial-mesenchymal transition (EMT) and primary ciliogenesis are two cell-biological programs that are essential for development of multicellular organisms and whose abnormal regulation results in many diseases (i.e., developmental anomalies and cancers). Emerging studies suggest an intricate interplay between these two processes. Here, we discuss physiological and pathological contexts in which their interconnections promote normal development or disease progression. We describe underlying molecular mechanisms of the interplay and EMT/ciliary signaling axes that influence EMT-related processes (i.e., stemness, motility and invasion). Understanding the molecular and cellular mechanisms of the relationship between EMT and primary ciliogenesis may provide new insights in the etiology of diseases related to EMT and cilia dysfunction.


Assuntos
Transição Epitelial-Mesenquimal , Neoplasias , Humanos , Transição Epitelial-Mesenquimal/fisiologia , Transdução de Sinais , Cílios
5.
Methods Cell Biol ; 175: 221-233, 2023.
Artigo em Inglês | MEDLINE | ID: mdl-36967142

RESUMO

Cilia are hair-like projections that assemble at the surface of cells in various tissues of multicellular organisms through a complex cell biological process called ciliogenesis. Cilia can assemble as single structures per cell (i.e. non-motile primary cilia), which act as cell signaling centers that dictate cell fate, or can be assembled in distinct cell types as many copies per cell (i.e. motile cilia) that beat to move fluids at the cell surface. The mechanisms that orchestrate formation and function of cilia, which are dysregulated in pathological settings such as ciliopathies, remain incompletely understood. Stem cell-derived organoids represent valuable models to study the mechanisms of ciliogenesis, ciliary signaling, and ciliary beating that collectively promote tissue development and homeostasis. Here, we present a comprehensive protocol for the growth of mammary organoids derived from mouse mammary stem cells and for immunofluorescence staining of primary cilia in these three-dimensional structures.


Assuntos
Cílios , Transdução de Sinais , Animais , Camundongos , Cílios/metabolismo , Diferenciação Celular
6.
Cell Death Dis ; 13(9): 787, 2022 09 14.
Artigo em Inglês | MEDLINE | ID: mdl-36104324

RESUMO

Cancer-associated fibroblasts (CAF) are a major cellular component of epithelial tumors. In breast cancers in particular these stromal cells have numerous tumorigenic effects in part due to their acquisition of a myofibroblastic phenotype. Breast CAFs (bCAFs) typically express MCL-1. We show here that pharmacological inhibition or knock down of this regulator of mitochondrial integrity in primary bCAFs directly derived from human samples mitigates myofibroblastic features. This decreases expression of genes involved in actomyosin organization and contractility (associated with a cytoplasmic retention of the transcriptional regulator, yes-associated protein-YAP) and decreases bCAFs ability to promote cancer cells invasion in 3D coculture assays. Our findings underscore the usefulness of targeting MCL-1 in breast cancer ecosystems, not only to favor death of cancer cells but also to counteract the tumorigenic activation of fibroblasts with which they co-evolve. Mechanistically, pharmacological inhibition of MCL-1 with a specific BH3 mimetic promotes mitochondrial fragmentation in bCAFs. Inhibition of the mitochondrial fission activity of DRP-1, which interacts with MCL-1 upon BH3 mimetic treatment, allows the maintenance of the myofibroblastic phenotype of bCAFs.


Assuntos
Neoplasias da Mama , Fibroblastos Associados a Câncer , Neoplasias da Mama/tratamento farmacológico , Neoplasias da Mama/genética , Neoplasias da Mama/metabolismo , Fibroblastos Associados a Câncer/metabolismo , Ecossistema , Feminino , Humanos , Proteína de Sequência 1 de Leucemia de Células Mieloides/genética , Proteína de Sequência 1 de Leucemia de Células Mieloides/metabolismo , Fenótipo
7.
Biomolecules ; 12(7)2022 06 28.
Artigo em Inglês | MEDLINE | ID: mdl-35883457

RESUMO

Since the Nobel Prize award more than twenty years ago for discovering the core apoptotic pathway in C. elegans, apoptosis and various other forms of regulated cell death have been thoroughly characterized by researchers around the world. Although many aspects of regulated cell death still remain to be elucidated in specific cell subtypes and disease conditions, many predicted that research into cell death was inexorably reaching a plateau. However, this was not the case since the last decade saw a multitude of cell death modalities being described, while harnessing their therapeutic potential reached clinical use in certain cases. In line with keeping research into cell death alive, francophone researchers from several institutions in France and Belgium established the French Cell Death Research Network (FCDRN). The research conducted by FCDRN is at the leading edge of emerging topics such as non-apoptotic functions of apoptotic effectors, paracrine effects of cell death, novel canonical and non-canonical mechanisms to induce apoptosis in cell death-resistant cancer cells or regulated forms of necrosis and the associated immunogenic response. Collectively, these various lines of research all emerged from the study of apoptosis and in the next few years will increase the mechanistic knowledge into regulated cell death and how to harness it for therapy.


Assuntos
Caenorhabditis elegans , Neoplasias , Animais , Apoptose , Morte Celular , Humanos , Necrose
8.
Sci Adv ; 7(44): eabf6063, 2021 Oct 29.
Artigo em Inglês | MEDLINE | ID: mdl-34705506

RESUMO

The epithelial-mesenchymal transition (EMT) and primary ciliogenesis induce stem cell properties in basal mammary stem cells (MaSCs) to promote mammogenesis, but the underlying mechanisms remain incompletely understood. Here, we show that EMT transcription factors promote ciliogenesis upon entry into intermediate EMT states by activating ciliogenesis inducers, including FGFR1. The resulting primary cilia promote ubiquitination and inactivation of a transcriptional repressor, GLIS2, which localizes to the ciliary base. We show that GLIS2 inactivation promotes MaSC stemness, and GLIS2 is required for normal mammary gland development. Moreover, GLIS2 inactivation is required to induce the proliferative and tumorigenic capacities of the mammary tumor­initiating cells (MaTICs) of claudin-low breast cancers. Claudin-low breast tumors can be segregated from other breast tumor subtypes based on a GLIS2-dependent gene expression signature. Collectively, our findings establish molecular mechanisms by which EMT programs induce ciliogenesis to control MaSC and MaTIC stemness, mammary gland development, and claudin-low breast cancer formation.

9.
Bull Cancer ; 108(11): 1057-1064, 2021 Nov.
Artigo em Francês | MEDLINE | ID: mdl-34561023

RESUMO

We are taking advantage of the launch of the latest version (v4.6) of our web-based data mining tool "breast cancer gene-expression miner" (bc-GenExMiner) to take stock of its position within the oncology research landscape and to present an activity report ten years after its establishment (http://bcgenex.ico.unicancer.fr). bc-GenExMiner is an open-access, user-friendly tool for statistical mining on breast tumor transcriptomes, annotated with more than 20 clinicopathologic and molecular characteristics. The database comprises more than 16,000 patients from 64 cohorts - including TCGA, METABRIC and SCAN-B - for whom several thousands of genes have been quantified by microarrays or RNA-seq. Correlation, expression and prognostic analyses are available for targeted, exhaustive or customized explorations of queried genes. bc-GenExMiner facilitates the validation, investigation, and prioritization of discoveries and hypotheses on genes of interest. It allows users to analyse large databases, create data visualizations, and obtain robust statistical analysis, thereby accelerating biomarker discovery. Ten years after its launch, judging by the number of visits, analyses, and scientific citations of bc-GenExMiner, we conclude that this web resource serves its purpose in the international scientific community working in breast cancer research, with a never-ending rise in its use.


Assuntos
Neoplasias da Mama/genética , Mineração de Dados/métodos , Bases de Dados Genéticas , Perfilação da Expressão Gênica/métodos , Neoplasias da Mama/química , Bases de Dados Genéticas/estatística & dados numéricos , Feminino , Marcadores Genéticos , Humanos , Intervenção Baseada em Internet , Prognóstico , Fatores de Tempo , Transcriptoma
10.
Database (Oxford) ; 20212021 02 18.
Artigo em Inglês | MEDLINE | ID: mdl-33599248

RESUMO

'Breast cancer gene-expression miner' (bc-GenExMiner) is a breast cancer-associated web portal (http://bcgenex.ico.unicancer.fr). Here, we describe the development of a new statistical mining module, which permits several differential gene expression analyses, i.e. 'Expression' module. Sixty-two breast cancer cohorts and one healthy breast cohort with their corresponding clinicopathological information are included in bc-GenExMiner v4.5 version. Analyses are based on microarray or RNAseq transcriptomic data. Thirty-nine differential gene expression analyses, grouped into 13 categories, according to clinicopathological and molecular characteristics ('Targeted' and 'Exhaustive') and gene expression ('Customized'), have been developed. Output results are visualized in four forms of plots. This new statistical mining module offers, among other things, the possibility to compare gene expression in healthy (cancer-free), tumour-adjacent and tumour tissues at once and in three triple-negative breast cancer subtypes (i.e. C1: molecular apocrine tumours; C2: basal-like tumours infiltrated by immune suppressive cells and C3: basal-like tumours triggering an ineffective immune response). Several validation tests showed that bioinformatics process did not alter the pathobiological information contained in the source data. In this work, we developed and demonstrated that bc-GenExMiner 'Expression' module can be used for exploratory and validation purposes. Database URL: http://bcgenex.ico.unicancer.fr.


Assuntos
Neoplasias da Mama , Biomarcadores Tumorais , Neoplasias da Mama/genética , Biologia Computacional , Feminino , Regulação Neoplásica da Expressão Gênica , Humanos , Transcriptoma
11.
Comput Biol Med ; 129: 104171, 2021 02.
Artigo em Inglês | MEDLINE | ID: mdl-33316552

RESUMO

Triple-negative breast cancer (TNBC) heterogeneity represents one of the main obstacles to precision medicine for this disease. Recent concordant transcriptomics studies have shown that TNBC could be divided into at least three subtypes with potential therapeutic implications. Although a few studies have been conducted to predict TNBC subtype using transcriptomics data, the subtyping was partially sensitive and limited by batch effect and dependence on a given dataset, which may penalize the switch to routine diagnostic testing. Therefore, we sought to build an absolute predictor (i.e., intra-patient diagnosis) based on machine learning algorithms with a limited number of probes. To that end, we started by introducing probe binary comparison for each patient (indicators). We based the predictive analysis on this transformed data. Probe selection was first involved combining both filter and wrapper methods for variable selection using cross-validation. We tested three prediction models (random forest, gradient boosting [GB], and extreme gradient boosting) using this optimal subset of indicators as inputs. Nested cross-validation consistently allowed us to choose the best model. The results showed that the fifty selected indicators highlighted the biological characteristics associated with each TNBC subtype. The GB based on this subset of indicators performs better than other models.


Assuntos
Neoplasias de Mama Triplo Negativas , Algoritmos , Biologia Computacional , Humanos , Aprendizado de Máquina , Neoplasias de Mama Triplo Negativas/genética
12.
Cancers (Basel) ; 12(10)2020 Oct 17.
Artigo em Inglês | MEDLINE | ID: mdl-33080792

RESUMO

Resistance of solid cancer cells to chemotherapies and targeted therapies is not only due to the mutational status of cancer cells but also to the concurring of stromal cells of the tumor ecosystem, such as immune cells, vasculature and cancer-associated fibroblasts (CAFs). The reciprocal education of cancer cells and CAFs favors tumor growth, survival and invasion. Mitochondrial function control, including the regulation of mitochondrial metabolism, oxidative stress and apoptotic stress are crucial for these different tumor progression steps. In this review, we focus on how CAFs participate in cancer progression by modulating cancer cells metabolic functions and mitochondrial apoptosis. We emphasize that mitochondria from CAFs influence their activation status and pro-tumoral effects. We thus advocate that understanding mitochondria-mediated tumor-stroma interactions provides the possibility to consider cancer therapies that improve current treatments by targeting these interactions or mitochondria directly in tumor and/or stromal cells.

13.
Biomolecules ; 10(8)2020 07 25.
Artigo em Inglês | MEDLINE | ID: mdl-32722518

RESUMO

The imbalance between BCL-2 homologues and pro-death counterparts frequently noted in cancer cells endows them with a cell autonomous survival advantage. To eradicate ectopic cells, inhibitors of these homologues (BH3 mimetics) were developed to trigger, during anticancer treatment, full activation of the canonical mitochondrial apoptotic pathway and related caspases. Despite efficiency in some clinical settings, these compounds do not completely fulfill their initial promise. We herein put forth that a growing body of evidence indicates that mitochondrial integrity, controlled by BCL-2 family proteins, and downstream caspases regulate other cell death modes and influence extracellular signaling by committed cells. Moreover, intercellular communications play a key role in spreading therapeutic response across cancer cell populations and in engaging an immune response. We thus advocate that BH3 mimetics administration would be more efficient in the long term if it did not induce apoptosis in all sensitive cells at the same time, but if it could instead allow (or trigger) death signal production by non-terminally committed dying cell populations. The development of such a trade-off strategy requires to unravel the effects of BH3 mimetics not only on each individual cancer cell but also on homotypic and heterotypic cell interactions in dynamic tumor ecosystems.


Assuntos
Antineoplásicos/farmacologia , Neoplasias/tratamento farmacológico , Proteínas Proto-Oncogênicas c-bcl-2/antagonistas & inibidores , Animais , Antineoplásicos/química , Antineoplásicos/uso terapêutico , Apoptose/efeitos dos fármacos , Descoberta de Drogas , Humanos , Mitocôndrias/efeitos dos fármacos , Mitocôndrias/metabolismo , Mitocôndrias/patologia , Terapia de Alvo Molecular , Neoplasias/metabolismo , Neoplasias/patologia , Proteínas Proto-Oncogênicas c-bcl-2/metabolismo
14.
Mol Cell Oncol ; 7(3): 1735912, 2020.
Artigo em Inglês | MEDLINE | ID: mdl-32391429

RESUMO

We recently identified a previously unappreciated ability of antimitotics to propagate apoptotic priming across cancer cell populations. The underlying paracrine cytotoxic signal, fueled by undead cells activating the cGAS/STING pathway, is required for in vivo antitumor response and it can be further exploited by delayed, but not synchronous, BCL-xL inhibition.

16.
Nat Commun ; 11(1): 259, 2020 01 14.
Artigo em Inglês | MEDLINE | ID: mdl-31937780

RESUMO

A fascinating but uncharacterized action of antimitotic chemotherapy is to collectively prime cancer cells to apoptotic mitochondrial outer membrane permeabilization (MOMP), while impacting only on cycling cell subsets. Here, we show that a proapoptotic secretory phenotype is induced by activation of cGAS/STING in cancer cells that are hit by antimitotic treatment, accumulate micronuclei and maintain mitochondrial integrity despite intrinsic apoptotic pressure. Organotypic cultures of primary human breast tumors and patient-derived xenografts sensitive to paclitaxel exhibit gene expression signatures typical of type I IFN and TNFα exposure. These cytokines induced by cGAS/STING activation trigger NOXA expression in neighboring cells and render them acutely sensitive to BCL-xL inhibition. cGAS/STING-dependent apoptotic effects are required for paclitaxel response in vivo, and they are amplified by sequential, but not synchronous, administration of BH3 mimetics. Thus anti-mitotic agents propagate apoptotic priming across heterogeneously sensitive cancer cells through cytosolic DNA sensing pathway-dependent extracellular signals, exploitable by delayed MOMP targeting.


Assuntos
Antimitóticos/farmacologia , Apoptose/efeitos dos fármacos , Neoplasias da Mama/patologia , Proteínas de Membrana/metabolismo , Comunicação Parácrina/efeitos dos fármacos , Animais , Neoplasias da Mama/metabolismo , Linhagem Celular , Feminino , Técnicas de Inativação de Genes , Humanos , Interferon Tipo I/genética , Interferon Tipo I/metabolismo , Proteínas de Membrana/genética , Camundongos , Nucleotidiltransferases/genética , Nucleotidiltransferases/metabolismo , Paclitaxel/farmacologia , Proteínas Proto-Oncogênicas c-bcl-2/genética , Proteínas Proto-Oncogênicas c-bcl-2/metabolismo , Transdução de Sinais/efeitos dos fármacos , Células Tumorais Cultivadas , Fator de Necrose Tumoral alfa/genética , Fator de Necrose Tumoral alfa/metabolismo , Ensaios Antitumorais Modelo de Xenoenxerto , Proteína bcl-X/antagonistas & inibidores , Proteína bcl-X/metabolismo
17.
Oncogene ; 37(16): 2122-2136, 2018 04.
Artigo em Inglês | MEDLINE | ID: mdl-29391601

RESUMO

Phosphorylation of Ser/Thr residues is a well-established modulating mechanism of the pro-apoptotic function of the BH3-only protein Bim. However, nothing is known about the putative tyrosine phosphorylation of this Bcl-2 family member and its potential impact on Bim function and subsequent Bax/Bak-mediated cytochrome c release and apoptosis. As we have previously shown that the tyrosine kinase Lyn could behave as an anti-apoptotic molecule, we investigated whether this Src family member could directly regulate the pro-apoptotic function of Bim. In the present study, we show that Bim is phosphorylated onto tyrosine residues 92 and 161 by Lyn, which results in an inhibition of its pro-apoptotic function. Mechanistically, we show that Lyn-dependent tyrosine phosphorylation of Bim increases its interaction with anti-apoptotic members such as Bcl-xL, therefore limiting mitochondrial outer membrane permeabilization and subsequent apoptosis. Collectively, our data uncover one molecular mechanism through which the oncogenic tyrosine kinase Lyn negatively regulates the mitochondrial apoptotic pathway, which may contribute to the transformation and/or the chemotherapeutic resistance of cancer cells.


Assuntos
Apoptose/genética , Proteína 11 Semelhante a Bcl-2/fisiologia , Quinases da Família src/fisiologia , Animais , Proteína 11 Semelhante a Bcl-2/antagonistas & inibidores , Transformação Celular Neoplásica/genética , Transformação Celular Neoplásica/patologia , Células Cultivadas , Resistencia a Medicamentos Antineoplásicos/genética , Células HEK293 , Células HeLa , Humanos , Células K562 , Camundongos , Mitocôndrias/genética , Mitocôndrias/metabolismo , Oncogenes/fisiologia , Transdução de Sinais/genética , Quinases da Família src/genética
18.
EMBO Rep ; 19(2): 234-243, 2018 02.
Artigo em Inglês | MEDLINE | ID: mdl-29233828

RESUMO

E2F1 is the main pro-apoptotic effector of the pRB-regulated tumor suppressor pathway by promoting the transcription of various pro-apoptotic proteins. We report here that E2F1 partly localizes to mitochondria, where it favors mitochondrial outer membrane permeabilization. E2F1 interacts with BCL-xL independently from its BH3 binding interface and induces a stabilization of BCL-xL at mitochondrial membranes. This prevents efficient control of BCL-xL over its binding partners, in particular over BAK resulting in the induction of cell death. We thus identify a new, non-BH3-binding regulator of BCL-xL localization dynamics that influences its anti-apoptotic activity.


Assuntos
Morte Celular , Fator de Transcrição E2F1/metabolismo , Proteína bcl-X/metabolismo , Apoptose , Linhagem Celular Tumoral , Fator de Transcrição E2F1/química , Espaço Extracelular/metabolismo , Regulação da Expressão Gênica/efeitos dos fármacos , Humanos , Mitocôndrias/metabolismo , Ligação Proteica , Transporte Proteico , Proteínas Proto-Oncogênicas c-bcl-2/genética , Proteínas Proto-Oncogênicas c-bcl-2/metabolismo , Transcrição Gênica , Proteína Killer-Antagonista Homóloga a bcl-2/metabolismo , Proteína bcl-X/química
19.
Cell Rep ; 17(12): 3347-3358, 2016 12 20.
Artigo em Inglês | MEDLINE | ID: mdl-28009301

RESUMO

Anti-apoptotic BCL-2 family members bind to BH3-only proteins and multidomain BAX/BAK to preserve mitochondrial integrity and maintain survival. Whereas inhibition of these interactions is the biological basis of BH3-mimetic anti-cancer therapy, the actual response of membrane-bound protein complexes to these compounds is currently ill-defined. Here, we find that treatment with BH3 mimetics targeting BCL-xL spares subsets of cells with the highest levels of this protein. In intact cells, sequestration of some pro-apoptotic activators (including PUMA and BIM) by full-length BCL-xL is much more resistant to derepression than previously described in cell-free systems. Alterations in the BCL-xL C-terminal anchor that impacts subcellular membrane-targeting and localization dynamics restore sensitivity. Thus, the membrane localization of BCL-xL enforces its control over cell survival and, importantly, limits the pro-apoptotic effects of BH3 mimetics by selectively influencing BCL-xL binding to key pro-apoptotic effectors.


Assuntos
Proteínas Reguladoras de Apoptose/genética , Apoptose/genética , Mitocôndrias/genética , Neoplasias/genética , Proteína bcl-X/genética , Proteínas Reguladoras de Apoptose/metabolismo , Proteína 11 Semelhante a Bcl-2/genética , Sobrevivência Celular/genética , Sistema Livre de Células , Células HCT116 , Humanos , Mitocôndrias/metabolismo , Neoplasias/tratamento farmacológico , Fragmentos de Peptídeos/administração & dosagem , Proteínas Proto-Oncogênicas/administração & dosagem , Proteínas Proto-Oncogênicas/genética , Proteínas Proto-Oncogênicas c-bcl-2/genética , Proteína bcl-X/metabolismo
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA