Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 34
Filtrar
Mais filtros








Base de dados
Intervalo de ano de publicação
1.
Evodevo ; 14(1): 13, 2023 Aug 24.
Artigo em Inglês | MEDLINE | ID: mdl-37620964

RESUMO

The second annual Cnidarian Model Systems Meeting, aka "Cnidofest", took place in Davis, California from 7 to 10th of September, 2022. The meeting brought together scientists using cnidarians to study molecular and cellular biology, development and regeneration, evo-devo, neurobiology, symbiosis, physiology, and comparative genomics. The diversity of topics and species represented in presentations highlighted the importance and versatility of cnidarians in addressing a wide variety of biological questions. In keeping with the spirit of the first meeting (and its predecessor, Hydroidfest), almost 75% of oral presentations were given by early career researchers (i.e., graduate students and postdocs). In this review, we present research highlights from the meeting.

2.
Cells ; 12(9)2023 04 26.
Artigo em Inglês | MEDLINE | ID: mdl-37174665

RESUMO

The proto-oncogene myc has been intensively studied primarily in vertebrate cell culture systems. Myc transcription factors control fundamental cellular processes such as cell proliferation, cell cycle control and stem cell maintenance. Myc interacts with the Max protein and Myc/Max heterodimers regulate thousands of target genes. The genome of the freshwater polyp Hydra encodes four myc genes (myc1-4). Previous structural and biochemical characterization showed that the Hydra Myc1 and Myc2 proteins share high similarities with vertebrate c-Myc, and their expression patterns suggested a function in adult stem cell maintenance. In contrast, an additional Hydra Myc protein termed Myc3 is highly divergent, lacking the common N-terminal domain and all conserved Myc-boxes. Single cell transcriptome analysis revealed that the myc3 gene is expressed in a distinct population of interstitial precursor cells committed to nerve- and gland-cell differentiation, where the Myc3 protein may counteract the stemness actions of Myc1 and Myc2 and thereby allow the implementation of a differentiation program. In vitro DNA binding studies showed that Myc3 dimerizes with Hydra Max, and this dimer efficiently binds to DNA containing the canonical Myc consensus motif (E-box). In vivo cell transformation assays in avian fibroblast cultures further revealed an unexpected high potential for oncogenic transformation in the conserved Myc3 C-terminus, as compared to Hydra Myc2 or Myc1. Structure modeling of the Myc3 protein predicted conserved amino acid residues in its bHLH-LZ domain engaged in Myc3/Max dimerization. Mutating these amino acid residues in the human c-Myc (MYC) sequence resulted in a significant decrease in its cell transformation potential. We discuss our findings in the context of oncogenic transformation and cell differentiation, both relevant for human cancer, where Myc represents a major driver.


Assuntos
Hydra , Animais , Humanos , Hydra/genética , Sequência de Aminoácidos , Genes myc , Sequências Hélice-Alça-Hélice , Aminoácidos
3.
bioRxiv ; 2023 Apr 04.
Artigo em Inglês | MEDLINE | ID: mdl-36993575

RESUMO

The small freshwater cnidarian polyp Hydra vulgaris uses adult stem cells (interstitial stem cells) to continually replace neurons throughout its life. This feature, combined with the ability to image the entire nervous system (Badhiwala et al., 2021; Dupre & Yuste, 2017) and availability of gene knockdown techniques (Juliano, Reich, et al., 2014; Lohmann et al., 1999; Vogg et al., 2022), makes Hydra a tractable model for studying nervous system development and regeneration at the whole-organism level. In this study, we use single-cell RNA sequencing and trajectory inference to provide a comprehensive molecular description of the adult nervous system. This includes the most detailed transcriptional characterization of the adult Hydra nervous system to date. We identified eleven unique neuron subtypes together with the transcriptional changes that occur as the interstitial stem cells differentiate into each subtype. Towards the goal of building gene regulatory networks to describe Hydra neuron differentiation, we identified 48 transcription factors expressed specifically in the Hydra nervous system, including many that are conserved regulators of neurogenesis in bilaterians. We also performed ATAC-seq on sorted neurons to uncover previously unidentified putative regulatory regions near neuron-specific genes. Finally, we provide evidence to support the existence of transdifferentiation between mature neuron subtypes and we identify previously unknown transition states in these pathways. All together, we provide a comprehensive transcriptional description of an entire adult nervous system, including differentiation and transdifferentiation pathways, which provides a significant advance towards understanding mechanisms that underlie nervous system regeneration.

4.
Genome Res ; 33(2): 283-298, 2023 02.
Artigo em Inglês | MEDLINE | ID: mdl-36639202

RESUMO

The epithelial and interstitial stem cells of the freshwater polyp Hydra are the best-characterized stem cell systems in any cnidarian, providing valuable insight into cell type evolution and the origin of stemness in animals. However, little is known about the transcriptional regulatory mechanisms that determine how these stem cells are maintained and how they give rise to their diverse differentiated progeny. To address such questions, a thorough understanding of transcriptional regulation in Hydra is needed. To this end, we generated extensive new resources for characterizing transcriptional regulation in Hydra, including new genome assemblies for Hydra oligactis and the AEP strain of Hydra vulgaris, an updated whole-animal single-cell RNA-seq atlas, and genome-wide maps of chromatin interactions, chromatin accessibility, sequence conservation, and histone modifications. These data revealed the existence of large kilobase-scale chromatin interaction domains in the Hydra genome that contain transcriptionally coregulated genes. We also uncovered the transcriptomic profiles of two previously molecularly uncharacterized cell types: isorhiza-type nematocytes and somatic gonad ectoderm. Finally, we identified novel candidate regulators of cell type-specific transcription, several of which have likely been conserved at least since the divergence of Hydra and the jellyfish Clytia hemisphaerica more than 400 million years ago.


Assuntos
Hydra , Animais , Hydra/genética , Hydra/metabolismo , Diferenciação Celular , Cromatina/metabolismo , Cromossomos , Epigênese Genética
5.
Elife ; 112022 05 19.
Artigo em Inglês | MEDLINE | ID: mdl-35588359

RESUMO

Zebrafish are an established research organism that has made many contributions to our understanding of vertebrate tissue and organ development, yet there are still significant gaps in our understanding of the genes that regulate gonad development, sex, and reproduction. Unlike the development of many organs, such as the brain and heart that form during the first few days of development, zebrafish gonads do not begin to form until the larval stage (≥5 days post-fertilization). Thus, forward genetic screens have identified very few genes required for gonad development. In addition, bulk RNA-sequencing studies that identify genes expressed in the gonads do not have the resolution necessary to define minor cell populations that may play significant roles in the development and function of these organs. To overcome these limitations, we have used single-cell RNA sequencing to determine the transcriptomes of cells isolated from juvenile zebrafish ovaries. This resulted in the profiles of 10,658 germ cells and 14,431 somatic cells. Our germ cell data represents all developmental stages from germline stem cells to early meiotic oocytes. Our somatic cell data represents all known somatic cell types, including follicle cells, theca cells, and ovarian stromal cells. Further analysis revealed an unexpected number of cell subpopulations within these broadly defined cell types. To further define their functional significance, we determined the location of these cell subpopulations within the ovary. Finally, we used gene knockout experiments to determine the roles of foxl2l and wnt9b for oocyte development and sex determination and/or differentiation, respectively. Our results reveal novel insights into zebrafish ovarian development and function, and the transcriptome profiles will provide a valuable resource for future studies.


Assuntos
Ovário , Peixe-Zebra , Animais , Feminino , Gônadas , Ovário/metabolismo , Diferenciação Sexual/genética , Transcriptoma , Peixe-Zebra/genética
6.
J Cell Sci ; 134(15)2021 08 01.
Artigo em Inglês | MEDLINE | ID: mdl-34346482

RESUMO

In Hydra, Notch inhibition causes defects in head patterning and prevents differentiation of proliferating nematocyte progenitor cells into mature nematocytes. To understand the molecular mechanisms by which the Notch pathway regulates these processes, we performed RNA-seq and identified genes that are differentially regulated in response to 48 h of treating the animals with the Notch inhibitor DAPT. To identify candidate direct regulators of Notch signalling, we profiled gene expression changes that occur during subsequent restoration of Notch activity and performed promoter analyses to identify RBPJ transcription factor-binding sites in the regulatory regions of Notch-responsive genes. Interrogating the available single-cell sequencing data set revealed the gene expression patterns of Notch-regulated Hydra genes. Through these analyses, a comprehensive picture of the molecular pathways regulated by Notch signalling in head patterning and in interstitial cell differentiation in Hydra emerged. As prime candidates for direct Notch target genes, in addition to Hydra (Hy)Hes, we suggest Sp5 and HyAlx. They rapidly recovered their expression levels after DAPT removal and possess Notch-responsive RBPJ transcription factor-binding sites in their regulatory regions.


Assuntos
Hydra , Animais , Diferenciação Celular/genética , Regulação da Expressão Gênica , Hydra/genética , Hydra/metabolismo , Inibidores da Agregação Plaquetária , Receptores Notch/genética , Receptores Notch/metabolismo , Transdução de Sinais/genética
7.
Elife ; 102021 07 30.
Artigo em Inglês | MEDLINE | ID: mdl-34328079

RESUMO

Hydra vulgaris is an emerging model organism for neuroscience due to its small size, transparency, genetic tractability, and regenerative nervous system; however, fundamental properties of its sensorimotor behaviors remain unknown. Here, we use microfluidic devices combined with fluorescent calcium imaging and surgical resectioning to study how the diffuse nervous system coordinates Hydra's mechanosensory response. Mechanical stimuli cause animals to contract, and we find this response relies on at least two distinct networks of neurons in the oral and aboral regions of the animal. Different activity patterns arise in these networks depending on whether the animal is contracting spontaneously or contracting in response to mechanical stimulation. Together, these findings improve our understanding of how Hydra's diffuse nervous system coordinates sensorimotor behaviors. These insights help reveal how sensory information is processed in an animal with a diffuse, radially symmetric neural architecture unlike the dense, bilaterally symmetric nervous systems found in most model organisms.


Assuntos
Hydra/fisiologia , Mecanotransdução Celular/fisiologia , Rede Nervosa/fisiologia , Neurônios/fisiologia , Animais , Cálcio/metabolismo , Técnicas Analíticas Microfluídicas , Sistema Nervoso/metabolismo , Imagem Óptica
8.
Elife ; 102021 03 29.
Artigo em Inglês | MEDLINE | ID: mdl-33779545

RESUMO

During whole-body regeneration, a bisection injury can trigger two different types of regeneration. To understand the transcriptional regulation underlying this adaptive response, we characterized transcript abundance and chromatin accessibility during oral and aboral regeneration in the cnidarian Hydra vulgaris. We found that the initial response to amputation at both wound sites is identical and includes widespread apoptosis and the activation of the oral-specifying Wnt signaling pathway. By 8 hr post amputation, Wnt signaling became restricted to oral regeneration. Wnt pathway genes were also upregulated in puncture wounds, and these wounds induced the formation of ectopic oral structures if pre-existing organizers were simultaneously amputated. Our work suggests that oral patterning is activated as part of a generic injury response in Hydra, and that alternative injury outcomes are dependent on signals from the surrounding tissue. Furthermore, Wnt signaling is likely part of a conserved wound response predating the split of cnidarians and bilaterians.


Assuntos
Padronização Corporal/genética , Hydra/fisiologia , Regeneração/genética , Proteínas Wnt/genética , Via de Sinalização Wnt/genética , Animais , Apoptose , Regulação da Expressão Gênica , Hydra/genética , Hydra/crescimento & desenvolvimento , Regulação para Cima
9.
Cell Syst ; 11(2): 161-175.e5, 2020 08 26.
Artigo em Inglês | MEDLINE | ID: mdl-32726596

RESUMO

Intratumoral heterogeneity is associated with aggressive tumor behavior, therapy resistance, and poor patient outcomes. Such heterogeneity is thought to be dynamic, shifting over periods of minutes to hours in response to signaling inputs from the tumor microenvironment. However, models of this process have been inferred from indirect or post-hoc measurements of cell state, leaving the temporal details of signaling-driven heterogeneity undefined. Here, we developed a live-cell model system in which microenvironment-driven signaling dynamics can be directly observed and linked to variation in gene expression. Our analysis reveals that paracrine signaling between two cell types is sufficient to drive continual diversification of gene expression programs. This diversification emerges from systems-level properties of the EGFR-RAS-ERK signaling cascade, including intracellular amplification of amphiregulin-mediated paracrine signals and differential kinetic filtering by target genes including Fra-1, c-Myc, and Egr1. Our data enable more precise modeling of paracrine-driven transcriptional variation as a generator of gene expression heterogeneity. A record of this paper's transparent peer review process is included in the Supplemental Information.


Assuntos
Expressão Gênica/genética , Sistema de Sinalização das MAP Quinases/genética , Receptores ErbB/metabolismo , Humanos , Transdução de Sinais
10.
RNA ; 26(5): 550-563, 2020 05.
Artigo em Inglês | MEDLINE | ID: mdl-32075940

RESUMO

Transposable elements (TEs) can damage genomes, thus organisms use a variety of mechanisms to repress TE expression. The PIWI-piRNA pathway is a small RNA pathway that represses TE expression in the germline of animals. Here we explore the function of the pathway in the somatic stem cells of Hydra, a long-lived freshwater cnidarian. Hydra have three stem cell populations, all of which express PIWI proteins; endodermal and ectodermal epithelial stem cells (ESCs) are somatic, whereas the interstitial stem cells have germline competence. To study somatic function of the pathway, we isolated piRNAs from Hydra that lack the interstitial lineage and found that these somatic piRNAs map predominantly to TE transcripts and display the conserved sequence signatures typical of germline piRNAs. Three lines of evidence suggest that the PIWI-piRNA pathway represses TEs in Hydra ESCs. First, epithelial knockdown of the Hydra piwi gene hywi resulted in up-regulation of TE expression. Second, degradome sequencing revealed evidence of PIWI-mediated cleavage of TE RNAs in epithelial cells using the ping-pong mechanism. Finally, we demonstrated a direct association between Hywi protein and TE transcripts in epithelial cells using RNA immunoprecipitation. Altogether, our data reveal that the PIWI-piRNA pathway represses TE expression in the somatic cell lineages of Hydra, which we propose contributes to the extreme longevity of the organism. Furthermore, our results, in combination with others, suggest that somatic TE repression is an ancestral function of the PIWI-piRNA pathway.


Assuntos
Linhagem da Célula/genética , Elementos de DNA Transponíveis/genética , Hydra/genética , RNA Interferente Pequeno/genética , Animais , Proteínas Argonautas/genética , Ectoderma/crescimento & desenvolvimento , Ectoderma/metabolismo , Endoderma/crescimento & desenvolvimento , Endoderma/metabolismo , Células Epiteliais/metabolismo , Regulação da Expressão Gênica no Desenvolvimento/genética , Inativação Gênica , Hydra/crescimento & desenvolvimento , Interferência de RNA , Células-Tronco/citologia
11.
Evodevo ; 10: 20, 2019.
Artigo em Inglês | MEDLINE | ID: mdl-31508195

RESUMO

The 2018 Cnidarian Model Systems Meeting (Cnidofest) was held September 6-9th at the University of Florida Whitney Laboratory for Marine Bioscience in St. Augustine, FL. Cnidofest 2018, which built upon the momentum of Hydroidfest 2016, brought together research communities working on a broad spectrum of cnidarian organisms from North America and around the world. Meeting talks covered diverse aspects of cnidarian biology, with sessions focused on genomics, development, neurobiology, immunology, symbiosis, ecology, and evolution. In addition to interesting biology, Cnidofest also emphasized the advancement of modern research techniques. Invited technology speakers showcased the power of microfluidics and single-cell transcriptomics and demonstrated their application in cnidarian models. In this report, we provide an overview of the exciting research that was presented at the meeting and discuss opportunities for future research.

12.
Cell Rep ; 28(2): 342-351.e4, 2019 07 09.
Artigo em Inglês | MEDLINE | ID: mdl-31291572

RESUMO

Plant xylem cells conduct water and mineral nutrients. Although most plant cells are totipotent, xylem cells are unusual and undergo terminal differentiation. Many genes regulating this process are well characterized, including the Vascular-related NAC Domain 7 (VND7), MYB46, and MYB83 transcription factors, which are proposed to act in interconnected feedforward loops (FFLs). Less is known regarding the molecular mechanisms underlying the terminal transition to xylem cell differentiation. Here, we generate whole-root and single-cell data, which demonstrate that VND7 initiates sharp switching of root cells to xylem cell identity. Based on these data, we identified 4 candidate VND7 downstream target genes capable of generating this switch. Although MYB46 responds to VND7 induction, it is not among these targets. This system provides an important model to study the emergent properties that may give rise to totipotency relative to terminal differentiation and reveals xylem cell subtypes.


Assuntos
Ativação Transcricional/fisiologia , Xilema/metabolismo , Diferenciação Celular , Plantas
13.
Science ; 365(6451)2019 07 26.
Artigo em Inglês | MEDLINE | ID: mdl-31346039

RESUMO

The adult Hydra polyp continually renews all of its cells using three separate stem cell populations, but the genetic pathways enabling this homeostatic tissue maintenance are not well understood. We sequenced 24,985 Hydra single-cell transcriptomes and identified the molecular signatures of a broad spectrum of cell states, from stem cells to terminally differentiated cells. We constructed differentiation trajectories for each cell lineage and identified gene modules and putative regulators expressed along these trajectories, thus creating a comprehensive molecular map of all developmental lineages in the adult animal. In addition, we built a gene expression map of the Hydra nervous system. Our work constitutes a resource for addressing questions regarding the evolution of metazoan developmental processes and nervous system function.


Assuntos
Diferenciação Celular/genética , Linhagem da Célula/genética , Hydra/crescimento & desenvolvimento , Hydra/genética , Células-Tronco/citologia , Animais , Hydra/citologia , Análise de Célula Única , Transcriptoma
14.
Curr Opin Neurobiol ; 56: 87-96, 2019 06.
Artigo em Inglês | MEDLINE | ID: mdl-30654234

RESUMO

Cnidarians shared a common ancestor with bilaterians more than 600 million years ago. This sister group relationship gives them an informative phylogenetic position for understanding the fascinating morphological and molecular cell type diversity of bilaterian nervous systems. Moreover, cnidarians display novel features such as endodermal neurogenesis and independently evolved centralizations, which provide a platform for understanding the evolution of nervous system innovations. In recent years, the application of modern genomic tools has significantly advanced our understanding of cnidarian nervous system structure and function. For example, transgenic reporter lines and gene knockdown experiments in several cnidarian species reveal a significant degree of conservation in the neurogenesis gene regulatory program, while single cell RNA sequencing projects are providing a much deeper understanding of cnidarian neural cell type diversity. At the level of neural function, the physiological properties of ion channels have been described and calcium imaging of the nervous system in whole animals has allowed for the identification of neural circuits underlying specific behaviours. Cnidarians have arrived in the modern era of molecular neurobiology and are primed to provide exciting new insights into the early evolution of nervous systems.


Assuntos
Sistema Nervoso , Animais , Cnidários , Genômica , Neurogênese , Filogenia
15.
Evodevo ; 8: 7, 2017.
Artigo em Inglês | MEDLINE | ID: mdl-31504077

RESUMO

Hydroidfest 2016 took place on September 23-25 at the UC Davis Bodega Marine Laboratory in Bodega Bay, CA. The meeting brought together cnidarian researchers, with an emphasis on those studying hydrozoans, from North America and other parts of the world. The scientific topics discussed were diverse, including sessions focused on development, regeneration, aging, immunology, symbiosis, and neurobiology. Thanks to the application of modern biological technologies, hydrozoans and other cnidarians are now fertile ground for research in numerous disciplines. Moreover, their amenability to comparative approaches is a powerful asset that was repeatedly showcased during the meeting. Here, we give a brief account of the work that was presented and the opportunities that emerged from the ensuing discussions.

16.
Mol Reprod Dev ; 84(2): 105-119, 2017 02.
Artigo em Inglês | MEDLINE | ID: mdl-27531602

RESUMO

Mechanisms of sex determination vary greatly among animals. Here we survey what is known in Cnidaria, the clade that forms the sister group to Bilateria and shows a broad array of sexual strategies and sexual plasticity. This observed diversity makes Cnidaria a well-suited taxon for the study of the evolution of sex determination, as closely related species can have different mechanisms, which allows for comparative studies. In this review, we survey the extensive descriptive data on sexual systems (e.g., gonochorism and hermaphroditism) and the plasticity of sex in various cnidarian taxa. Within Cnidaria, hydrozoans (e.g., Hydra, Hydractinia, and Clytia) are the best understood in regard to mechanistic determination and maintenance of sex, largely due to the discovery of the interstitial stem cells, which give rise to the germ cells. We also present a hypothesis for the evolution of the various sexual systems that are observed in Hydra. Finally, given the rapid advances in genome sequencing and editing, several exciting possible future directions for increasing our understanding of sex determination mechanisms in cnidarians are discussed. Mol. Reprod. Dev. 84: 105-119, 2017. © 2016 Wiley Periodicals, Inc.


Assuntos
Evolução Biológica , Cnidários/fisiologia , Processos de Determinação Sexual/fisiologia , Animais , Cnidários/classificação , Feminino , Masculino
17.
Evol Dev ; 18(4): 267-78, 2016 07.
Artigo em Inglês | MEDLINE | ID: mdl-27402572

RESUMO

Specification of the germ cell lineage is required for sexual reproduction in all animals. However, the timing and mechanisms of germ cell specification is remarkably diverse in animal development. Echinoderms, such as sea urchins and sea stars, are excellent model systems to study the molecular and cellular mechanisms that contribute to germ cell specification. In several echinoderm embryos tested, the germ cell factor Vasa accumulates broadly during early development and is restricted after gastrulation to cells that contribute to the germ cell lineage. In the sea urchin, however, the germ cell factor Vasa is restricted to a specific lineage by the 32-cell stage. We therefore hypothesized that the germ cell specification program in the sea urchin/Euechinoid lineage has evolved to an earlier developmental time point. To test this hypothesis we determined the expression pattern of a second germ cell factor, Nanos, in four out of five extant echinoderm clades. Here we find that Nanos mRNA does not accumulate until the blastula stage or later during the development of all other echinoderm embryos except those that belong to the Echinoid lineage. Instead, Nanos is expressed in a restricted domain at the 32-128 cell stage in Echinoid embryos. Our results support the model that the germ cell specification program underwent a heterochronic shift in the Echinoid lineage. A comparison of Echinoid and non-Echinoid germ cell specification mechanisms will contribute to our understanding of how these mechanisms have changed during animal evolution.


Assuntos
Equinodermos/embriologia , Proteínas de Ligação a RNA/genética , Animais , RNA Helicases DEAD-box/genética , RNA Helicases DEAD-box/metabolismo , Equinodermos/classificação , Equinodermos/genética , Equinodermos/metabolismo , Embrião não Mamífero/metabolismo , Expressão Gênica , Células Germinativas , RNA Mensageiro/metabolismo , Proteínas de Ligação a RNA/metabolismo
18.
Bioessays ; 38(3): 216-9, 2016 Mar.
Artigo em Inglês | MEDLINE | ID: mdl-26798974

RESUMO

This recent meeting covered non-bilaterian (e.g., cnidarians, ctenophores, and sponges) animals broadly, but with emphasis in four areas: 1) New genomic resources and tools for functional studies, 2) advances in developmental and regeneration studies, 3) the evolution and function of nervous systems, 4) symbiosis and the holobiome.


Assuntos
Evolução Biológica , Animais , Mapeamento Cromossômico , Cnidários/citologia , Cnidários/genética , Cnidários/crescimento & desenvolvimento , Genoma , Análise de Sequência de DNA , Células-Tronco/fisiologia , Simbiose
19.
J Vis Exp ; (91): 51888, 2014 Sep 11.
Artigo em Inglês | MEDLINE | ID: mdl-25285460

RESUMO

As a member of the phylum Cnidaria, the sister group to all bilaterians, Hydra can shed light on fundamental biological processes shared among multicellular animals. Hydra is used as a model for the study of regeneration, pattern formation, and stem cells. However, research efforts have been hampered by lack of a reliable method for gene perturbations to study molecular function. The development of transgenic methods has revitalized the study of Hydra biology(1). Transgenic Hydra allow for the tracking of live cells, sorting to yield pure cell populations for biochemical analysis, manipulation of gene function by knockdown and over-expression, and analysis of promoter function. Plasmid DNA injected into early stage embryos randomly integrates into the genome early in development. This results in hatchlings that express transgenes in patches of tissue in one or more of the three lineages (ectodermal epithelial, endodermal epithelial, or interstitial). The success rate of obtaining a hatchling with transgenic tissue is between 10% and 20%. Asexual propagation of the transgenic hatchling is used to establish a uniformly transgenic line in a particular lineage. Generating transgenic Hydra is surprisingly simple and robust, and here we describe a protocol that can be easily implemented at low cost.


Assuntos
DNA/administração & dosagem , Hydra/genética , Microinjeções/métodos , Plasmídeos/administração & dosagem , Animais , Animais Geneticamente Modificados , Feminino , Técnicas de Silenciamento de Genes , Hydra/embriologia , Masculino , Plasmídeos/genética
20.
Methods Mol Biol ; 1128: 187-96, 2014.
Artigo em Inglês | MEDLINE | ID: mdl-24567215

RESUMO

Isolating cells based on specific gene expression enables a focused biochemical and molecular analysis. While cultured cells and hematopoietic cells, for example, are routinely isolated by fluorescence activated cell sorting (FACS), early embryonic cells are a relatively untapped source for FACS applications often because the embryos of many animals are quite limiting. Furthermore, many applications require genetic model organisms in which cells can be labeled by fluorescent transgenes, or antibodies against cell surface antigens. Here we define conditions in the sea urchin embryo for isolation of embryonic cells based on expression of specific proteins. We use the sea urchin embryo for which a nearly unlimited supply of embryonic cells is available and demonstrate the conditions for separation of the embryo into single cells, fixation of the cells for antibody penetration into the cells, and conditions for FACS of a rare cell type in the embryo. This protocol may be adapted for analysis of mRNA, chromatin, protein, or carbohydrates and depends only on the probe availability for the cell of interest. We anticipate that this protocol will be broadly applicable to embryos of other species.


Assuntos
Blástula/citologia , Ouriços-do-Mar/citologia , Animais , Separação Celular , Citometria de Fluxo , Técnicas de Cultura de Tecidos
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA