Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 3 de 3
Filtrar
Mais filtros








Base de dados
Intervalo de ano de publicação
1.
Data Brief ; 43: 108354, 2022 Aug.
Artigo em Inglês | MEDLINE | ID: mdl-35770028

RESUMO

Antibiotics on H2 producing bacteria shall be considered as being one of the critical elements in biological H2 production utilizing livestock manure as raw resources. Despite the fact that the manure stands a significance role in bio-fermentation, the possibility of antibiotics being contained in excreta shall not be eliminated. Findings of whether the above saying might threaten the safety of bio-H2 production needs to be further studied. The experiment subjects include: six single and three combined antibiotics were tested and analyzed by the application of the gradient experiment method. Along with the H2 production rate, CHO content, pH and OD600 were used to analyze the effects of various antibiotics introduction on the hydrolysis, fermentation and H2 production. To a further extent, four typical representative samples were selected for biodiversity analysis from the single antibiotic experiment groups. Amounting more than 6000 pieces of data were obtained in a series of experiments. Data suggested that remarkable measure of antibiotics have various degrees of H2 production inhibition, while some antibiotics, Penicillin G, Streptomycin Sulfate, and their compound antibiotics, could promote the growth of Ethanoligenens sp. and improve H2 yield in the contrary. Correspondent to the transition of key metabolic intermediates and end products, the mechanism of each antibiotic type and dose on H2 production were summarized as follows: the main inhibitory mechanisms were: (1) board-spectrum inhibition, (2) partial inhibition, (3) H2 consumption enhancement; and the enhancement mechanisms were: (1) enhance the growth of H2-producing bacteria, (2) enhanced starch hydrolysis, (3) inhibitory H2 consumption or release of acid inhibition. Meanwhile, data analysis found that the effect of antibiotics on H2 producing was not only related to type, but also to dosage. Even one kind of antibiotic may have completely opposite effects on H2-producing bacteria under different dosage conditions. Inhibition of H2 yield was highest with Levofloxacin at 6.15 mg/L, gas production was reduced by 88.77%; and enhancement of H2 yield was highest with Penicillin G at 7.20 mg/L, the gas production increased by 72.90%.

2.
Data Brief ; 43: 108353, 2022 Aug.
Artigo em Inglês | MEDLINE | ID: mdl-35707246

RESUMO

In-situ coal bio-gasification can be defined as one of the coal bio-mining methodology that fully utilizes the methanogenic bacteria in coal to review the current findings, namely anaerobic digestion of organic components. The following experiment has been done in regards, one vertical well and one multi-branch horizontal well were used as experiment wells and two vertical wells were used as control wells, the pilot test was carried out with single well nutrition injection method. By applying the above mentioned method, the concentration of Cl- ion and number altered in Methanogen spp. were used to trace nutrition diffusion. Furthermore, technical implementation results analysis has been made with the observation of CH4 production changes and coal bed biome evolution. Gas production rates in each well were monitored by using the FLLQ gas roots flow mete. The concentration of CH4 and CO2 were evaluated by using the Agilent 7890A gas chromatograph, on the other hand, concentrations of Cl- were determined by the application of ICS-1100 ion chromatography system. The F420 fluorescence method was adopted to test for the presence of methanogenic bacteria. In the interim of the completion stage, the study stated that the bacterial diversity of underground water of Z-7H well has a high pass sequence with the experimental period of 814 days. Gas production data in Z-159 and Z-7H wells showed the gasification of coal lasted 635 and 799 days, yielded 74817 m3 and 251754 m3 coalbed methane, respectively. Furthermore, experimental data presented that one time nutrition injection in anthracite coalbed methane wells achieved an average of 717 days of continuous gas production among all experimental wells. The above fore-said study dedicated the significance of native bacterial fermentation, as it proven the fact that anthracite can be applied to accomplish coal bio-gasification and coalbed methane production stimulation in-situ.

3.
J Environ Manage ; 315: 115088, 2022 Aug 01.
Artigo em Inglês | MEDLINE | ID: mdl-35483251

RESUMO

The impact of antibiotics on H2-producing bacteria must be considered in the industrialization of biological H2 production using livestock manure as raw resources. However, whether antibiotics that may be contained in excreta will threaten the safety of biohydrogen production needs to be researched. This study explored the impact characteristics and mechanism of six single antibiotics and three groups of compound antibiotics on H2 production. Experiments confirmed that most antibiotics have different degrees of H2 production inhibition, while some antibiotics, which like Penicillin G, Streptomycin Sulfate, and their compound antibiotics, could promote the growth of Ethanoligenens sp. and improve H2 yield on the contrary. Comprehensive analysis shows that the main inhibitory mechanisms were: (1) board-spectrum inhibition, (2) partial inhibition, (3) H2 consumption enhancement; and the enhancement mechanisms were: (1) enhance the growth of H2-producing bacteria, (2) enhanced starch hydrolysis, (3) inhibitory H2 consumption or release of acid inhibition. Meanwhile, experiment found that the effect of antibiotics on H2 producing was not only related to type, but also to dosage. Even one kind of antibiotic may have completely opposite effects on H2-producing bacteria under different dosage conditions. Inhibition of H2 yield was highest with Levofloxacin at 6.15 mg/L, gas production was reduced by 88.77%; and enhancement of H2 yield was highest with Penicillin G at 7.20 mg/L, the gas production increased by 72.90%. In the selection of raw material, the type and content of antibiotics demand a detailed investigation and analysis to ensure that the sustainability of H2 yield.


Assuntos
Carvão Mineral , Hidrogênio , Antibacterianos/farmacologia , Bactérias , Reatores Biológicos/microbiologia , Fermentação , Hidrogênio/análise
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA