Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 3 de 3
Filtrar
Mais filtros








Base de dados
Intervalo de ano de publicação
1.
Anal Chem ; 89(4): 2250-2258, 2017 02 21.
Artigo em Inglês | MEDLINE | ID: mdl-28193005

RESUMO

Epitope mapping the specific residues of an antibody/antigen interaction can be used to support mechanistic interpretation, antibody optimization, and epitope novelty assessment. Thus, there is a strong need for mapping methods, particularly integrative ones. Here, we report the identification of an energetic epitope by determining the interfacial hot-spot that dominates the binding affinity for an anti-interleukin-23 (anti-IL-23) antibody by using the complementary approaches of hydrogen/deuterium exchange mass spectrometry (HDX-MS), fast photochemical oxidation of proteins (FPOP), alanine shave mutagenesis, and binding analytics. Five peptide regions on IL-23 with reduced backbone amide solvent accessibility upon antibody binding were identified by HDX-MS, and five different peptides over the same three regions were identified by FPOP. In addition, FPOP analysis at the residue level reveals potentially key interacting residues. Mutants with 3-5 residues changed to alanine have no measurable differences from wild-type IL-23 except for binding of and signaling blockade by the 7B7 anti-IL-23 antibody. The M5 IL-23 mutant differs from wild-type by five alanine substitutions and represents the dominant energetic epitope of 7B7. M5 shows a dramatic decrease in binding to BMS-986010 (which contains the 7B7 Fab, where Fab is fragment antigen-binding region of an antibody), yet it maintains functional activity, binding to p40 and p19 specific reagents, and maintains biophysical properties similar to wild-type IL-23 (monomeric state, thermal stability, and secondary structural features).


Assuntos
Alanina/metabolismo , Anticorpos Monoclonais/metabolismo , Mapeamento de Epitopos/métodos , Epitopos/metabolismo , Interleucina-23/metabolismo , Reações Antígeno-Anticorpo , Clonagem Molecular , Medição da Troca de Deutério , Fragmentos Fab das Imunoglobulinas/metabolismo , Espectrometria de Massas , Modelos Moleculares , Mutagênese , Oxirredução , Ligação Proteica
2.
MAbs ; 4(1): 69-83, 2012.
Artigo em Inglês | MEDLINE | ID: mdl-22327431

RESUMO

Interleukin-21 (IL-21) is a type I four-helical bundle cytokine that exerts a variety of significant effects on many hematopoietic cells, including T and B lymphocytes and natural killer cells. IL-21 is produced predominantly by CD4+ T cells and natural killer T cells and, when aberrantly overexpressed, appears to play important roles in a wide variety of autoimmune disorders. To generate potential therapeutic reagents capable of inhibiting IL-21 for clinical use, we immunized human immunoglobulin transgenic mice with IL-21 and then identified and cloned a panel of human anti-human IL-21 binding monoclonal antibodies. IL-21 neutralizing and IL-21-binding, non-neutralizing antibodies were assigned to distinct epitope "bins" based on surface plasmon resonance competition studies. The most potent neutralizing antibodies had extremely high (sub pM) affinity for IL-21 and were able to block IL-21 activity in various biological assays using either an IL-21R-transfected pre-B-cell line or primary human B cells, and their neutralizing activity was, in some cases, superior to that of a soluble form of the high affinity heterodimeric IL-21 receptor. Characterization of this panel of IL-21 antibodies provided the basis for the selection of a therapeutic candidate antibody capable of inhibiting IL-21 activity for the treatment of autoimmune and inflammatory diseases.


Assuntos
Anticorpos Monoclonais/biossíntese , Anticorpos Monoclonais/imunologia , Anticorpos Neutralizantes/biossíntese , Anticorpos Neutralizantes/imunologia , Interleucinas/imunologia , Sequência de Aminoácidos , Animais , Anticorpos Monoclonais/farmacologia , Anticorpos Monoclonais/uso terapêutico , Anticorpos Neutralizantes/farmacologia , Anticorpos Neutralizantes/uso terapêutico , Autoimunidade , Linfócitos B/imunologia , Células CHO , Linhagem Celular , Cricetinae , Epitopos/imunologia , Humanos , Interleucinas/administração & dosagem , Interleucinas/química , Interleucinas/genética , Células Matadoras Naturais/imunologia , Camundongos , Camundongos Transgênicos , Células Precursoras de Linfócitos B/imunologia , Coelhos , Ratos , Receptores de Interleucina-21/genética , Receptores de Interleucina-21/imunologia , Linfócitos T/imunologia
3.
Protein Eng Des Sel ; 23(3): 115-27, 2010 Mar.
Artigo em Inglês | MEDLINE | ID: mdl-20022918

RESUMO

Bispecific antibodies (bsAbs) present an attractive opportunity to combine the additive and potentially synergistic effects exhibited by combinations of monoclonal antibodies (mAbs). Current challenges for engineering bsAbs include retention of the binding affinity of the parent mAb or antibody fragment, the ability to bind both targets simultaneously, and matching valency with biology. Other factors to consider include structural stability and expression of the recombinant molecule, both of which may have significant impact on its development as a therapeutic. Here, we incorporate selection of stable, potent single-chain variable fragments (scFvs) early in the engineering process to assemble bsAbs for therapeutic applications targeting the cytokines IL-17A/A and IL-23. Stable scFvs directed against human cytokines IL-23p19 and IL-17A/A were isolated from a human Fab phage display library via batch conversion of panning output from Fabs to scFvs. This strategy integrated a step for shuffling V regions during the conversion and permitted the rescue of scFv molecules in both the V(H)V(L) and the V(L)V(H) orientations. Stable scFvs were identified and assembled into several bispecific formats as fusions to the Fc domain of human IgG1. The engineered bsAbs are potent neutralizers of the biological activity of both cytokines (IC(50) < 1 nM), demonstrate the ability to bind both target ligands simultaneously and display stability and productivity advantageous for successful manufacture of a therapeutic molecule. Pharmacokinetic analysis of the bsAbs in mice revealed serum half-lives similar to human mAbs. Assembly of bispecific molecules using stable antibody fragments offers an alternative to reformatting mAbs and minimizes subsequent structure-related and manufacturing concerns.


Assuntos
Anticorpos Biespecíficos/genética , Anticorpos Biespecíficos/imunologia , Interleucina-17/imunologia , Interleucina-23/imunologia , Engenharia de Proteínas , Animais , Anticorpos Biespecíficos/química , Anticorpos Biespecíficos/farmacocinética , Anticorpos Monoclonais/química , Anticorpos Monoclonais/imunologia , Afinidade de Anticorpos , Bases de Dados de Proteínas , Escherichia coli/genética , Feminino , Meia-Vida , Humanos , Cinética , Camundongos , Estabilidade Proteica , Anticorpos de Cadeia Única/química , Anticorpos de Cadeia Única/genética , Anticorpos de Cadeia Única/imunologia , Anticorpos de Cadeia Única/metabolismo
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA