Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 9 de 9
Filtrar
Mais filtros








Base de dados
Intervalo de ano de publicação
1.
Biomacromolecules ; 24(11): 4939-4957, 2023 11 13.
Artigo em Inglês | MEDLINE | ID: mdl-37819211

RESUMO

This work presents a comprehensive analysis of the biodegradation of polyhydroxybutyrate (PHB) and chemically modified PHB with different chemical and crystal structures in a soil environment. A polymer modification reaction was performed during preparation of the chemically modified PHB films, utilizing 2,5-dimethyl-2,5-di(tert-butylperoxy)-hexane as a free-radical initiator and maleic anhydride. Films of neat PHB and chemically modified PHB were prepared by extrusion and thermocompression. The biological agent employed was natural mixed microflora in the form of garden soil. The course and extent of biodegradation of the films was investigated by applying various techniques, as follows: a respirometry test to determine the production of carbon dioxide through microbial degradation; scanning electron microscopy (SEM); optical microscopy; fluorescence microscopy; differential scanning calorimetry (DSC); and X-ray diffraction (XRD). Next-generation sequencing was carried out to study the microbial community involved in biodegradation of the films. Findings from the respirometry test indicated that biodegradation of the extruded and chemically modified PHB followed a multistage (2-3) course, which varied according to the spatial distribution of amorphous and crystalline regions and their spherulitic morphology. SEM and polarized optical microscopy (POM) confirmed that the rate of biodegradation depended on the availability of the amorphous phase in the interspherulitic region and the width of the interlamellar region in the first stage, while dependence on the size of spherulites and thickness of spherulitic lamellae was evident in the second stage. X-ray diffraction revealed that orthorhombic α-form crystals with helical chain conformation degraded concurrently with ß-form crystals with planar zigzag conformation. The nucleation of PHB crystals after 90 days of biodegradation was identified by DSC and POM, a phenomenon which impeded biodegradation. Fluorescence microscopy evidenced that the crystal structure of PHB affected the physiological behavior of soil microorganisms in contact with the surfaces of the films.


Assuntos
Hidroxibutiratos , Poliésteres , Ácido 3-Hidroxibutírico , Hidroxibutiratos/química , Poliésteres/química , Solo
2.
Int J Mol Sci ; 23(22)2022 Nov 15.
Artigo em Inglês | MEDLINE | ID: mdl-36430556

RESUMO

In this experimental research, different types of essential oils (EOs) were blended with polyhydroxybutyrate (PHB) to study the influence of these additives on PHB degradation. The blends were developed by incorporating three terpenoids at two concentrations (1 and 3%). The mineralization rate obtained from CO2 released from each sample was the factor that defined biodegradation. Furthermore, scanning electron microscope (SEM), differential scanning calorimetry (DSC), and dynamic mechanical analysis (DMA) were used in this research. The biodegradation percentages of PHB blended with 3% of eucalyptol, limonene, and thymol after 226 days were reached 66.4%, 73.3%, and 76.9%, respectively, while the rate for pure PHB was 100% after 198 days, and SEM images proved these results. Mechanical analysis of the samples showed that eucalyptol had the highest resistance level, even before the burial test. The other additives showed excellent mechanical properties although they had less mechanical strength than pure PHB after extrusion. The samples' mechanical properties improved due to their crystallinity and decreased glass transition temperature (Tg). DSC results showed that blending terpenoids caused a reduction in Tg, which is evident in the DMA results, and a negligible reduction in melting point (Tm).


Assuntos
Anti-Infecciosos , Butiratos , Poliésteres/química , Terpenos , Eucaliptol , Antibacterianos
3.
Int J Biol Macromol ; 213: 110-122, 2022 Jul 31.
Artigo em Inglês | MEDLINE | ID: mdl-35644317

RESUMO

This study investigates novel ternary polymer blends based on polyvinylpyrrolidone (PVP) as the matrix in combination with lignosulfonate and synthetic zeolite. The blends were prepared by the casting method, and their properties were analysed by various techniques, i.e. FTIR analysis, differential scanning calorimetry and thermogravimetric analysis, including tests for water solubility and uptake, and determination of adhesion and hardness. The biodegradation of the blends in soil was also evaluated, and an experiment was conducted on plant growth (Sinapis alba). Optical microscopy showed that particles of the synthetic zeolite were relatively evenly distributed in the polymer matrix, forming random networks therein. The FTIR spectra for the blends proved that hydrogen bonding interactions had occurred between the PVP/synthetic zeolite and PVP/lignosulfonate. DSC analysis confirmed the good miscibility of the PVP and lignosulfonate. TGA results indicated that the thermal stability of the PVP was maintained. Lignosulfonate had the effect of reducing the adhesion of the blends. However, it was revealed that effect depends greatly on the presence of zeolite and the concentration of lignosulfonate. The obtained results showed that the optimal composition of the blend is 2.5 wt% of zeolite and 5 wt% of lignosulfonate into the PVP. Its water solubility and uptake was satisfactory from the perspective of handling and further utilization. A respirometric biodegradation test confirmed that the ternary blend was environmentally friendly, in addition to which a germination experiment evidenced that the lignosulfonate and synthetic zeolite promoted the root growth and development of S. alba. From these findings it was concluded that the novel ternary polymer blend was applicable as either as seed carriers (in the form of seed tapes) or as a biocompatible coating to protect seeds.


Assuntos
Povidona , Zeolitas , Varredura Diferencial de Calorimetria , Química Agrícola , Lignina/análogos & derivados , Polímeros/química , Povidona/química , Espectroscopia de Infravermelho com Transformada de Fourier/métodos , Água
4.
Environ Sci Pollut Res Int ; 29(30): 45292-45302, 2022 Jun.
Artigo em Inglês | MEDLINE | ID: mdl-35146604

RESUMO

The study of bacterial degradation of 1-octylpyrrolidin-2-one (NOP) by river water and soil bacteria was the main aim of the research. Although the compound demonstrated bacteriostatic as well as bactericidal effects against Gram-positive and certain Gram-negative bacteria at concentrations ranging from 100 to 1000 mg L-1, its concentration of 100 mg L-1 was successfully degraded by microbial communities of both river water and alluvial soil; removal efficiencies reached 87.2 and 88.4% of dissolved organic carbon, respectively. Isolation of the strains responsible for the process showed that bacterial degradation was initiated by the octane-utilising bacteria of the genus Phenylobacterium, which used four carbon atoms of the NOP octyl chain and oxidised terminal carbon atom of the remaining chain. The structure of the intermediate produced by phenylobacteria was elucidated following the results obtained from the detailed electrospray mass spectrometry (ESI-MS) analysis; these experiments showed that it is a 4-(2-oxopyrrolidin-1-yl)butanoic acid. This intermediate was further degraded by other bacterial members of appropriate microbial communities, namely Bordetella petrii and Arthrobacter sp. Further tests proved that these bacteria were able to assimilate the nitrogen atom of the lactam ring and thus complete the degradation process.


Assuntos
Arthrobacter , Solo , Antibacterianos/metabolismo , Antibacterianos/farmacologia , Arthrobacter/metabolismo , Biodegradação Ambiental , Carbono/metabolismo , Rios/química , Solo/química , Microbiologia do Solo , Água/metabolismo
5.
J Environ Manage ; 228: 213-222, 2018 Dec 15.
Artigo em Inglês | MEDLINE | ID: mdl-30223180

RESUMO

This paper describes a potential environmental problem closely linked with the global production of water-soluble polymers such as polyvinyl alcohol (PVA) and polyvinylpyrrolidone (PVP). Both polymers make up the components of a multitude of products commonly utilized by industries and households. Hence, such a widespread use of PVA and PVP in the industrial sector and among consumers (the concentration of PVP in urban wastewater is approximately 7 mg/L) could pose a considerable problem, particularly to the environment. To this end, many publications have recently highlighted the poor biodegradability of PVA, in principle influenced by numerous biotic and abiotic factors. Facts published on the environmental fate of PVP have been scant, basically reporting that it is a biologically resistant polymer. As a result, the commercially produced water-soluble polymers of PVA and PVP are essentially non-biodegradable and possess the capacity to accumulate in virtually all environmental media. Consequently, there is a chance of heightened risk to the very environmental constituents in which PVA and PVP accumulate, depending on the routes of entry and transformation processes underway in such constituents of the ecosystem. This assumption is confirmed by the findings of initial research, which is worrying. Herein, PVA was detected in a soil environment, while a relatively high concentration of PVP was found in river water. A review of the literature was conducted to summarize the current state of knowledge concerning the fate of PVA and PVP in various environments, thereby also discerning potential solutions to tackle such dangers. This paper proposes methods to enhance the biodegradability of materials containing such materials; for PVA this means utilizing a suitable polysaccharide, whereas for PVP this pertains to actuating applications that induce substances to degrade. Accordingly, while it is understandable that this work cannot fully address all the issues associated with polymeric xenobiotics, it can still serve as a guide to discerning an economically viable solution, and provide a foundation for further research.


Assuntos
Álcool de Polivinil/química , Povidona/química , Água/química , Xenobióticos/química
6.
Water Sci Technol ; 71(5): 776-82, 2015.
Artigo em Inglês | MEDLINE | ID: mdl-25768226

RESUMO

N-methyl-2-pyrrolidone (NMP) is a widely used solvent for many organic compounds and a component found in a vast array of chemical preparations. For this research paper, NMP degrading bacteria were isolated from two samples of activated sludge. They pertained to both Gram-negative and Gram-positive members, and belong to the Pseudomonas, Paracoccus, Acinetobacter and Rhodococcus genera. All the strains utilized 300 mg/L of NMP as the only source of carbon, energy and nitrogen over several days, and they were shown to additionally be able to degrade N-acetylphenylalanine (NAP). The growth of all the isolated strains was recorded at different NMP concentrations, to a maximum of 20 g/L.


Assuntos
Bactérias/metabolismo , Pirrolidinonas/metabolismo , Esgotos/microbiologia , Bactérias/isolamento & purificação , Carbono/metabolismo , Nitrogênio/metabolismo , Fenilalanina/análogos & derivados , Rhodococcus/metabolismo , Solventes/metabolismo
7.
Water Environ Res ; 84(12): 2123-32, 2012 Dec.
Artigo em Inglês | MEDLINE | ID: mdl-23342944

RESUMO

Polyvinylpyrrolidone (PVP) is a frequently used polymer in the pharmaceutical and foodstuff industries. Because it is not subject to metabolic changes and is virtually nondegradable, trace concentrations of PVP are often found in community wastewaters. The literature finds that the partial removal of PVP in wastewater treatment plants probably occurs through sorption. The primary objective of this study was to find an effective method to remove PVP from wastewaters. In this regard, the literature indicates the theoretical potential to use specific enzymes (e.g., gamma-lactamases, amidases) to gradually degrade PVP molecules. Polyvinylpyrrolidone biodegradability tests were conducted using suitable heterogeneous cultures (activated sludge) collected from a conventional wastewater treatment plant, treatment plants connected to a pharmaceutical factory, and using select enzymes. Aerobic biodegradation of PVP in a conventional wastewater environment was ineffective, even after adaptation of activated sludge using the nearly identical monomer 1-methyl-2-pyrrolidone. Another potential method for PVP removal involves pretreating the polymer prior to biological degradation. Based on the results (approximately 10 to 15% biodegradation), pretreatment was partially effective, realistically, it could only be applied with difficulty at wastewater treatment plants. Sorption of PVP to an active carbon sorbent (Chezacarb S), which corresponded to the Langmuir isotherm, and sorption to activated sludge, which corresponded to the Freundlich isotherm, were also evaluated. From these sorption tests, it can be concluded that the considerable adsorption of PVP to activated sludge occurred primarily at low PVP concentrations. Based on the test results, the authors recommend the following methods for PVP removal from wastewater: (1) sorption; (2) application of specific microorganisms; and (3) alkaline hydrolysis, which is the least suitable of the three for use in wastewater treatment plants.


Assuntos
Povidona/isolamento & purificação , Eliminação de Resíduos Líquidos/métodos , Águas Residuárias/análise , Poluentes Químicos da Água/isolamento & purificação , Purificação da Água/métodos , Biodegradação Ambiental , Biomassa , Hidrólise , Povidona/química , Esgotos
8.
J Environ Manage ; 94(1): 13-24, 2012 Feb.
Artigo em Inglês | MEDLINE | ID: mdl-22098784

RESUMO

This work presents a short review of adsorptive materials proposed and tested for removing phthalates from an aqueous environment. The objective is not to present an exhaustive review of all the types of adsorbents used, but to focus on selected types of "innovative" materials. Examples include modified activated carbon, chitosan and its modifications, ß-cyclodextrin, and specific types of biomass, such as activated sludge from a wastewater treatment plant, seaweed and microbial cultures. Data from the literature do not confirm the existence of a broad-spectral adsorbent with high sorption efficiency, low production costs and environmentally friendly manufacture. According to the coefficients of Freundlich's isotherm, the most promising adsorbent of those mentioned in this work appears to be the biomass of activated sludge, or extracellular polysaccharides extracted from it. This material benefits from steady production, is cheap and readily available. Nevertheless, before putting it in practice, the treatment and adaptation of this raw material has to be taken into consideration.


Assuntos
Recuperação e Remediação Ambiental , Ácidos Ftálicos/química , Purificação da Água/métodos , Adsorção , Biomassa , Carvão Vegetal/química , Quitosana/química , Alga Marinha/química , Esgotos/química , beta-Ciclodextrinas/química
9.
Appl Microbiol Biotechnol ; 76(4): 911-7, 2007 Sep.
Artigo em Inglês | MEDLINE | ID: mdl-17594087

RESUMO

A new polyvinyl alcohol (PVA)-degrading bacterium was isolated from activated sludge sampled during a waste water treatment process and identified as Sphingomonas sp. Its PVA oxidase activity and alcohol dehydrogenase activity for various low-molecular-weight secondary alcohols were detected. Both activities were associated with cells of the degrader, and they were not extracellular. Under optimal conditions, the isolate was able to degrade 500 mg of PVA per litre in 2 weeks. The strain required pyrroloquinoline quinone (PQQ) and another growth factor, the later could be supplied by a co-isolated Rhodococcus erythropolis strain. The findings stressed the complex nature of environmental PVA degradation and proved that other factors different from PQQ could be important in symbiotic biodegradation of PVA with some sphingomonads.


Assuntos
Catalase/metabolismo , Cofator PQQ/metabolismo , Álcool de Polivinil/metabolismo , Rhodococcus/metabolismo , Sphingomonas/metabolismo , Biodegradação Ambiental , Cinética , Rhodococcus/crescimento & desenvolvimento , Esgotos/microbiologia , Sphingomonas/crescimento & desenvolvimento , Simbiose
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA