Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 14 de 14
Filtrar
Mais filtros








Base de dados
Intervalo de ano de publicação
1.
Elife ; 112022 11 15.
Artigo em Inglês | MEDLINE | ID: mdl-36377786

RESUMO

Opioid tolerance is well-described physiologically but its mechanistic basis remains incompletely understood. An important site of opioid action in vivo is the presynaptic terminal, where opioids inhibit transmitter release. This response characteristically resists desensitization over minutes yet becomes gradually tolerant over hours, and how this is possible remains unknown. Here, we delineate a cellular mechanism underlying this longer-term form of opioid tolerance in cultured rat medium spiny neurons. Our results support a model in which presynaptic tolerance is mediated by a gradual depletion of cognate receptors from the axon surface through iterative rounds of receptor endocytosis and recycling. For the µ-opioid receptor (MOR), we show that the agonist-induced endocytic process which initiates iterative receptor cycling requires GRK2/3-mediated phosphorylation of the receptor's cytoplasmic tail, and that partial or biased agonist drugs with reduced ability to drive phosphorylation-dependent endocytosis in terminals produce correspondingly less presynaptic tolerance. We then show that the δ-opioid receptor (DOR) conforms to the same general paradigm except that presynaptic endocytosis of DOR, in contrast to MOR, does not require phosphorylation of the receptor's cytoplasmic tail. Further, we show that DOR recycles less efficiently than MOR in axons and, consistent with this, that DOR tolerance develops more strongly. Together, these results delineate a cellular basis for the development of presynaptic tolerance to opioids and describe a methodology useful for investigating presynaptic neuromodulation more broadly.


Assuntos
Analgésicos Opioides , Receptores Opioides delta , Ratos , Animais , Analgésicos Opioides/farmacologia , Tolerância a Medicamentos , Transdução de Sinais , Endocitose/fisiologia
2.
J Neurosci Methods ; 366: 109408, 2022 01 15.
Artigo em Inglês | MEDLINE | ID: mdl-34763022

RESUMO

Modulation of neuronal circuit activity is key to information processing in the brain. G protein-coupled receptors (GPCRs), the targets of most neuromodulatory ligands, show extremely diverse expression patterns in neurons and receptors can be localized in various sub-neuronal membrane compartments. Upon activation, GPCRs promote signaling cascades that alter the level of second messengers, drive phosphorylation changes, modulate ion channel function, and influence gene expression, all of which critically impact neuron physiology. Because of its high degree of complexity, this form of interneuronal communication has remained challenging to integrate into our conceptual understanding of brain function. Recent technological advances in fluorescence microscopy and the development of optical biosensors now allow investigating neuromodulation with unprecedented resolution on the level of individual cells. In this review, we will highlight recent imaging techniques that enable determining the precise localization of GPCRs in neurons, with specific focus on the subcellular and nanoscale level. Downstream of receptors, we describe novel conformation-specific biosensors that allow for real-time monitoring of GPCR activation and of distinct signal transduction events in neurons. Applying these new tools has the potential to provide critical insights into the function and organization of GPCRs in neuronal cells and may help decipher the molecular and cellular mechanisms that underlie neuromodulation.


Assuntos
Técnicas Biossensoriais , Imagem Molecular , Neurônios , Receptores Acoplados a Proteínas G , Microscopia de Fluorescência , Neurônios/química , Neurônios/metabolismo , Receptores Acoplados a Proteínas G/análise , Receptores Acoplados a Proteínas G/metabolismo , Transdução de Sinais/fisiologia
3.
Cell Rep ; 36(10): 109678, 2021 09 07.
Artigo em Inglês | MEDLINE | ID: mdl-34496238

RESUMO

The endosomal recycling system dynamically tunes synaptic strength, which underlies synaptic plasticity. Exocytosis is involved in the expression of long-term potentiation (LTP), as postsynaptic cleavage of the SNARE (soluble NSF-attachment protein receptor) protein VAMP2 by tetanus toxin blocks LTP. Moreover, induction of LTP increases the exocytosis of transferrin receptors (TfRs) and markers of recycling endosomes (REs), as well as post-synaptic AMPA type receptors (AMPARs). However, the interplay between AMPAR and TfR exocytosis remains unclear. Here, we identify VAMP4 as the vesicular SNARE that mediates most dendritic RE exocytosis. In contrast, VAMP2 plays a minor role in RE exocytosis. LTP induction increases the exocytosis of both VAMP2- and VAMP4-labeled organelles. Knock down (KD) of VAMP4 decreases TfR recycling but increases AMPAR recycling. Moreover, VAMP4 KD increases AMPAR-mediated synaptic transmission, which consequently occludes LTP expression. The opposing changes in AMPAR and TfR recycling upon VAMP4 KD reveal their sorting into separate endosomal populations.


Assuntos
Dendritos/metabolismo , Plasticidade Neuronal/fisiologia , Neurônios/metabolismo , Proteínas R-SNARE/metabolismo , Proteína 2 Associada à Membrana da Vesícula/metabolismo , Animais , Endossomos/metabolismo , Potenciais Pós-Sinápticos Excitadores/fisiologia , Exocitose/fisiologia , Feminino , Masculino , Ratos Sprague-Dawley , Sinapses/metabolismo , Transmissão Sináptica/fisiologia
4.
Nat Protoc ; 15(9): 3088-3104, 2020 09.
Artigo em Inglês | MEDLINE | ID: mdl-32807908

RESUMO

Endocytosis is a fundamental process occurring in all eukaryotic cells. Live cell imaging of endocytosis has helped to decipher many of its mechanisms and regulations. With the pulsed-pH (ppH) protocol, one can detect the formation of individual endocytic vesicles (EVs) with an unmatched temporal resolution of 2 s. The ppH protocol makes use of cargo protein (e.g., the transferrin receptor) coupled to a pH-sensitive fluorescent protein, such as superecliptic pHluorin (SEP), which is brightly fluorescent at pH 7.4 but not fluorescent at pH <6.0. If the SEP moiety is at the surface, its fluorescence will decrease when cells are exposed to a low pH (5.5) buffer. If the SEP moiety has been internalized, SEP will remain fluorescent even during application of the low pH buffer. Fast perfusion enables the complete exchange of low and high pH extracellular solutions every 2 s, defining the temporal resolution of the technique. Unlike other imaging-based endocytosis assays, the ppH protocol detects EVs without a priori hypotheses on the dynamics of vesicle formation. Here, we explain how the ppH protocol quantifies the endocytic activity of living cells and the recruitment of associated proteins in real time. We provide a step-by-step procedure for expression of the reporter proteins with transient transfection, live cell image acquisition with synchronized pH changes and automated analysis. The whole protocol can be performed in 2 d to provide quantitative information on the endocytic process being studied.


Assuntos
Imagem Molecular/métodos , Vesículas Transportadoras/metabolismo , Animais , Linhagem Celular , Humanos , Concentração de Íons de Hidrogênio , Camundongos , Análise Espaço-Temporal
5.
Mol Pharmacol ; 98(4): 425-432, 2020 10.
Artigo em Inglês | MEDLINE | ID: mdl-32198210

RESUMO

The powerful analgesic effects of opioid drugs have captivated the interest of physicians and scientists for millennia, and the ability of opioid drugs to produce serious undesired effects has been recognized for a similar period of time (Kieffer and Evans, 2009). Many of these develop progressively with prolonged or repeated drug use and then persist, motivating particular interest in understanding how opioid drugs initiate adaptive or maladaptive modifications in neural function or regulation. Exciting advances have been made over the past several years in elucidating drug-induced changes at molecular, cellular, and physiologic scales of analysis. The present review will highlight some recent cellular studies that we believe bridge across scales and will focus on optical imaging approaches that put opioid drug action "under the microscope." SIGNIFICANCE STATEMENT: Opioid receptors are major pharmacological targets, but their signaling at the cellular level results from a complex interplay between pharmacology, regulation, subcellular localization, and membrane trafficking. This minireview discusses recent advances in understanding the cellular biology of opioid receptors, emphasizing particular topics discussed at the 50th anniversary of the International Narcotics Research Conference. Our goal is to highlight distinct signaling and regulatory properties emerging from the cellular biology of opioid receptors and discuss potential relevance to therapeutics.


Assuntos
Analgésicos Opioides/farmacologia , Optogenética/métodos , Receptores Opioides/metabolismo , Animais , Membrana Celular/efeitos dos fármacos , Membrana Celular/metabolismo , Humanos , Modelos Biológicos , Transporte Proteico/efeitos dos fármacos , Transdução de Sinais/efeitos dos fármacos
6.
Elife ; 92020 02 25.
Artigo em Inglês | MEDLINE | ID: mdl-32096468

RESUMO

G protein-coupled receptors (GPCRs) signal through allostery, and it is increasingly clear that chemically distinct agonists can produce different receptor-based effects. It has been proposed that agonists selectively promote receptors to recruit one cellular interacting partner over another, introducing allosteric 'bias' into the signaling system. However, the underlying hypothesis - that different agonists drive GPCRs to engage different cytoplasmic proteins in living cells - remains untested due to the complexity of readouts through which receptor-proximal interactions are typically inferred. We describe a cell-based assay to overcome this challenge, based on GPCR-interacting biosensors that are disconnected from endogenous transduction mechanisms. Focusing on opioid receptors, we directly demonstrate differences between biosensor recruitment produced by chemically distinct opioid ligands in living cells. We then show that selective recruitment applies to GRK2, a biologically relevant GPCR regulator, through discrete interactions of GRK2 with receptors or with G protein beta-gamma subunits which are differentially promoted by agonists.


About a third of all drugs work by targeting a group of proteins known as G-protein coupled receptors, or GPCRs for short. These receptors are found on the surface of cells and transmit messages across the cell's outer barrier. When a signaling molecule, like a hormone, is released in the body, it binds to a GPCR and changes the receptor's shape. The change in structure affects how the GPCR interacts and binds to other proteins on the inside of the cell, triggering a series of reactions that alter the cell's activity. Scientists have previously seen that a GPCR can trigger different responses depending on which signaling molecule is binding on the surface of the cell. However, the mechanism for this is unknown. One hypothesis is that different signaling molecules change the GPCR's preference for binding to different proteins on the inside of the cell. The challenge has been to observe this happening without interfering with the process. Stoeber et al. have now tested this idea by attaching fluorescent tags to proteins that bind to activated GPCRs directly and without binding other signaling proteins. This meant these proteins could be tracked under a microscope as they made their way to bind to the GPCRs. Stoeber et al. focused on one particular GPCR, known as the opioid receptor, and tested the binding of two different opioid signaling molecules, etorphine and Dynorphin A. The experiments revealed that the different opioids did affect which of the engineered proteins would preferentially bind to the opioid receptor. This was followed by a similar experiment, where the engineered proteins were replaced with another protein called GRK2, which binds to the opioid receptor under normal conditions in the cell. This showed that GRK2 binds much more strongly to the opioid receptor when Dynorphin A is added compared to adding etorphine. These findings show that GPCRs can not only communicate that a signaling molecule is binding but can respond differently to convey what molecule it is more specifically. This could be important in developing drugs, particularly to specifically trigger the desired response and reduce side effects. Stoeber et al. suggest that an important next step for research is to understand how the GPCRs preferentially bind to different proteins.


Assuntos
Quinase 2 de Receptor Acoplado a Proteína G/metabolismo , Receptores Acoplados a Proteínas G/metabolismo , Receptores Opioides/metabolismo , Animais , Quinase 2 de Receptor Acoplado a Proteína G/fisiologia , Células HEK293 , Humanos , Camundongos , Microscopia de Fluorescência , Receptores Acoplados a Proteínas G/agonistas , Receptores Acoplados a Proteínas G/fisiologia , Receptores Opioides/fisiologia , Proteínas Recombinantes
7.
Neuron ; 105(4): 663-677.e8, 2020 02 19.
Artigo em Inglês | MEDLINE | ID: mdl-31837915

RESUMO

A major function of GPCRs is to inhibit presynaptic neurotransmitter release, requiring ligand-activated receptors to couple locally to effectors at terminals. The current understanding of how this is achieved is through receptor immobilization on the terminal surface. Here, we show that opioid peptide receptors, GPCRs that mediate highly sensitive presynaptic inhibition, are instead dynamic in axons. Opioid receptors diffuse rapidly throughout the axon surface and internalize after ligand-induced activation specifically at presynaptic terminals. We delineate a parallel regulated endocytic cycle for GPCRs operating at the presynapse, separately from the synaptic vesicle cycle, which clears activated receptors from the surface of terminals and locally reinserts them to maintain the diffusible surface pool. We propose an alternate strategy for achieving local control of presynaptic effectors that, opposite to using receptor immobilization and enforced proximity, is based on lateral mobility of receptors and leverages the inherent allostery of GPCR-effector coupling.


Assuntos
Endocitose/fisiologia , Terminações Pré-Sinápticas/metabolismo , Receptores Acoplados a Proteínas G/metabolismo , Vesículas Sinápticas/metabolismo , Analgésicos Opioides/farmacologia , Animais , Células Cultivadas , Endocitose/efeitos dos fármacos , Ala(2)-MePhe(4)-Gly(5)-Encefalina/farmacologia , Terminações Pré-Sinápticas/efeitos dos fármacos , Transporte Proteico/efeitos dos fármacos , Transporte Proteico/fisiologia , Ratos , Ratos Sprague-Dawley , Receptores Acoplados a Proteínas G/agonistas , Receptores de Neurotransmissores/agonistas , Receptores de Neurotransmissores/metabolismo , Vesículas Sinápticas/efeitos dos fármacos
8.
Sci Adv ; 5(4): eaaw0025, 2019 04.
Artigo em Inglês | MEDLINE | ID: mdl-30989118

RESUMO

Somatic cells can be reprogrammed into pluripotent stem cells using the Yamanaka transcription factors. Reprogramming requires both epigenetic landscape reshaping and global remodeling of cell identity, structure, basic metabolic processes, and organelle form and function. We hypothesize that variable regulation of the proteostasis network and its influence upon the protein-folding environment within cells and their organelles is responsible for the low efficiency and stochasticity of reprogramming. We find that the unfolded protein response of the endoplasmic reticulum (UPRER), the mitochondrial UPR, and the heat shock response, which ensure proteome quality during stress, are activated during reprogramming. The UPRER is particularly crucial, and its ectopic, transient activation, genetically or pharmacologically, enhances reprogramming. Last, stochastic activation of the UPRER predicts reprogramming efficiency in naïve cells. Thus, the low efficiency and stochasticity of cellular reprogramming are due partly to the inability to properly initiate the UPRER to remodel the ER and its proteome.


Assuntos
Reprogramação Celular , Estresse do Retículo Endoplasmático , Retículo Endoplasmático/fisiologia , Fibroblastos/citologia , Resposta ao Choque Térmico , Células-Tronco Pluripotentes Induzidas/citologia , Resposta a Proteínas não Dobradas , Células Cultivadas , Fibroblastos/fisiologia , Humanos , Células-Tronco Pluripotentes Induzidas/fisiologia , Proteoma/análise , Transdução de Sinais
9.
Nature ; 557(7705): 381-386, 2018 05.
Artigo em Inglês | MEDLINE | ID: mdl-29720660

RESUMO

ß-arrestins are critical regulator and transducer proteins for G-protein-coupled receptors (GPCRs). ß-arrestin is widely believed to be activated by forming a stable and stoichiometric GPCR-ß-arrestin scaffold complex, which requires and is driven by the phosphorylated tail of the GPCR. Here we demonstrate a distinct and additional mechanism of ß-arrestin activation that does not require stable GPCR-ß-arrestin scaffolding or the GPCR tail. Instead, it occurs through transient engagement of the GPCR core, which destabilizes a conserved inter-domain charge network in ß-arrestin. This promotes capture of ß-arrestin at the plasma membrane and its accumulation in clathrin-coated endocytic structures (CCSs) after dissociation from the GPCR, requiring a series of interactions with membrane phosphoinositides and CCS-lattice proteins. ß-arrestin clustering in CCSs in the absence of the upstream activating GPCR is associated with a ß-arrestin-dependent component of the cellular ERK (extracellular signal-regulated kinase) response. These results delineate a discrete mechanism of cellular ß-arrestin function that is activated catalytically by GPCRs.


Assuntos
Receptores Acoplados a Proteínas G/metabolismo , beta-Arrestinas/metabolismo , Animais , Biocatálise , Células COS , Membrana Celular/metabolismo , Chlorocebus aethiops , Células HEK293 , Humanos , Fosfatidilinositóis/metabolismo , Transporte Proteico , Receptores Acoplados a Proteínas G/química , beta-Arrestinas/química
10.
Neuron ; 98(5): 963-976.e5, 2018 06 06.
Artigo em Inglês | MEDLINE | ID: mdl-29754753

RESUMO

Opioid receptors (ORs) precisely modulate behavior when activated by native peptide ligands but distort behaviors to produce pathology when activated by non-peptide drugs. A fundamental question is how drugs differ from peptides in their actions on target neurons. Here, we show that drugs differ in the subcellular location at which they activate ORs. We develop a genetically encoded biosensor that directly detects ligand-induced activation of ORs and uncover a real-time map of the spatiotemporal organization of OR activation in living neurons. Peptide agonists produce a characteristic activation pattern initiated in the plasma membrane and propagating to endosomes after receptor internalization. Drugs produce a different activation pattern by additionally driving OR activation in the somatic Golgi apparatus and Golgi elements extending throughout the dendritic arbor. These results establish an approach to probe the cellular basis of neuromodulation and reveal that drugs distort the spatiotemporal landscape of neuronal OR activation.


Assuntos
Analgésicos Opioides/metabolismo , Membrana Celular/metabolismo , Dendritos/metabolismo , Endossomos/metabolismo , Complexo de Golgi/metabolismo , Neurônios/metabolismo , Peptídeos/metabolismo , Receptores Opioides/metabolismo , Animais , Técnicas Biossensoriais , Ala(2)-MePhe(4)-Gly(5)-Encefalina/metabolismo , D-Penicilina (2,5)-Encefalina/metabolismo , Leucina Encefalina-2-Alanina/metabolismo , Células HEK293 , Células HeLa , Humanos , Espaço Intracelular , Microscopia de Fluorescência , Morfina/metabolismo , Naloxona , Antagonistas de Entorpecentes , Ratos , Análise Espaço-Temporal
11.
Cell Rep ; 18(8): 1840-1847, 2017 02 21.
Artigo em Inglês | MEDLINE | ID: mdl-28228251

RESUMO

Endocytosis in neuronal dendrites is known to play a critical role in synaptic transmission and plasticity such as long-term depression (LTD). However, the inability to detect endocytosis directly in living neurons has hampered studies of its dynamics and regulation. Here, we visualized the formation of individual endocytic vesicles containing pHluorin-tagged receptors with high temporal resolution in the dendrites of cultured hippocampal neurons. We show that transferrin receptors (TfRs) are constitutively internalized at optically static clathrin-coated structures. These structures are slightly enriched near synapses that represent preferential sites for the endocytosis of postsynaptic AMPA-type receptors (AMPARs), but not for non-synaptic TfRs. Moreover, the frequency of AMPAR endocytosis events increases after the induction of NMDAR-dependent chemical LTD, but the activity of perisynaptic endocytic zones is not differentially regulated. We conclude that endocytosis is a highly dynamic and stereotyped process that internalizes receptors in precisely localized endocytic zones.


Assuntos
Dendritos/fisiologia , Endocitose/fisiologia , Neurônios/fisiologia , Transporte Proteico/fisiologia , Vesículas Transportadoras/metabolismo , Células Cultivadas , Dendritos/metabolismo , Potenciais Pós-Sinápticos Excitadores/fisiologia , Hipocampo/metabolismo , Hipocampo/fisiologia , Humanos , Potenciação de Longa Duração/fisiologia , Depressão Sináptica de Longo Prazo/fisiologia , Plasticidade Neuronal/fisiologia , Neurônios/metabolismo , Receptores de AMPA/metabolismo , Receptores de N-Metil-D-Aspartato/metabolismo , Receptores da Transferrina/metabolismo , Sinapses/metabolismo , Transmissão Sináptica/fisiologia
12.
Mol Pharmacol ; 91(1): 65-73, 2017 Jan.
Artigo em Inglês | MEDLINE | ID: mdl-27821547

RESUMO

G protein-coupled receptors (GPCRs), the largest family of signaling receptors, are critically regulated by endosomal trafficking, suggesting that endosomes might provide new strategies for manipulating GPCR signaling. Here we test this hypothesis by focusing on class III phosphatidylinositol 3-kinase (Vps34), which is an essential regulator of endosomal trafficking. We verify that Vps34 is required for recycling of the ß2-adrenoceptor (ß2AR), a prototypical GPCR, and then investigate the effects of Vps34 inhibition on the canonical cAMP response elicited by ß2AR activation. Vps34 inhibition impairs the ability of cells to recover this response after prolonged activation, which is in accord with the established role of recycling in GPCR resensitization. In addition, Vps34 inhibition also attenuates the short-term cAMP response, and its effect begins several minutes after initial agonist application. These results establish Vps34 as an essential determinant of both short-term and long-term canonical GPCR signaling, and support the potential utility of the endosomal system as a druggable target for signaling.


Assuntos
Classe III de Fosfatidilinositol 3-Quinases/metabolismo , Endossomos/enzimologia , Receptores Adrenérgicos beta 2/metabolismo , Transdução de Sinais , AMP Cíclico/metabolismo , Células HEK293 , Humanos , Modelos Biológicos , Fosfatos de Fosfatidilinositol/metabolismo
13.
J Cell Sci ; 129(13): 2526-37, 2016 07 01.
Artigo em Inglês | MEDLINE | ID: mdl-27185862

RESUMO

The immunological synapse forms at the interface between a T cell and an antigen-presenting cell after foreign antigen recognition. The immunological synapse is considered to be the site where the signaling cascade leading to T lymphocyte activation is triggered. Here, we show that another signaling region can be detected before formation of the synapse at the opposite pole of the T cell. This structure appears during the first minute after the contact forms, is transient and contains all the classic components that have been previously described at the immunological synapse. Its formation is independent of antigen recognition but is driven by adhesion itself. It constitutes a reservoir of signaling molecules that are potentially ready to be sent to the immunological synapse through a microtubule-dependent pathway. The antisynapse can thus be considered as a pre-synapse that is triggered independently of antigen recognition.


Assuntos
Adesão Celular/imunologia , Sinapses Imunológicas/genética , Receptores de Antígenos de Linfócitos T/genética , Linfócitos T/imunologia , Células Apresentadoras de Antígenos/imunologia , Comunicação Celular/genética , Comunicação Celular/imunologia , Humanos , Células Jurkat/imunologia , Ativação Linfocitária/imunologia , Receptores de Antígenos de Linfócitos T/imunologia
14.
J Neurosci ; 34(33): 11106-18, 2014 Aug 13.
Artigo em Inglês | MEDLINE | ID: mdl-25122907

RESUMO

Exocytosis of recycling endosomes (REs) represents the last step of receptor and membrane recycling, a fundamental process involved in many aspects of cell physiology. In neurons, it is involved in the control of cell polarity and synaptic plasticity and is locally and tightly regulated. However, its molecular mechanisms are still poorly understood. We have imaged single exocytosis events of REs in rat hippocampal neurons in culture transfected with three types of receptors tagged with the pH-sensitive GFP mutant superecliptic phluorin. We found that exocytosis events are grouped into two categories: (1) short burst events in which receptors diffuse into the plasma membrane in a few seconds; and (2) long display events in which receptors remain visible and clustered after exocytosis for many seconds. Display events are much rarer in non-neuronal cells, such as fibroblasts and astrocytes. Using two-color imaging and fast extracellular solution changes, we show that display events correspond to the rapid opening and closing of a fusion pore (or "kiss-and-run") with a median opening time of 2.6 s, which restricts the diffusion of multiple receptor types and bound cargo. Moreover, the RE marker Rab11 remains enriched after display exocytosis events and controls the mode of RE exocytosis. Finally, a given RE can undergo multiple rounds of display exocytosis. The last step of recycling can thus be controlled in neurons for the selective delivery of receptors at the cell surface.


Assuntos
Dendritos/metabolismo , Endossomos/metabolismo , Exocitose/fisiologia , Neurônios/metabolismo , Actinas/metabolismo , Animais , Dinaminas/metabolismo , Ratos
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA