Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 211
Filtrar
Mais filtros








Base de dados
Intervalo de ano de publicação
1.
Dalton Trans ; 53(12): 5507-5520, 2024 Mar 19.
Artigo em Inglês | MEDLINE | ID: mdl-38416047

RESUMO

A novel family of cobalt(II) compounds with tridentate pyridine-2,6-diiminephenyl type ligands featuring electron-withdrawing substituents of general formula [Co(n-XPhPDI)2](ClO4)2·S [n-XPhPDI = 2,6-bis(N-n-halophenylformimidoyl)pyridine with n = 4 (1-3) and 3 (4); X = I (1), Br (2 and 4) and Cl (3); S = MeCN (1 and 2) and EtOAc (3)] has been synthesised and characterised by single-crystal X-ray diffraction, electron paramagnetic resonance, and static (dc) and dynamic (ac) magnetic measurements combined with theoretical calculations. The structures of 1-4 consist of mononuclear bis(chelating) cobalt(II) complex cations, [CoII(n-XPhPDI)2]2+, perchlorate anions, and acetonitrile (1 and 2) or ethyl acetate (3) molecules of crystallisation. This unique series of mononuclear six-coordinate octahedral cobalt(II) complexes displays both thermally-induced low-spin (LS)/high-spin (HS) transition and field-induced slow magnetic relaxation in both LS and HS states. A complete LS ↔ HS transition occurs for 1 and 2, while it is incomplete for 4, one-third of the complexes being HS at low temperatures. In contrast, 3 remains HS in all the temperature range. 1 and 2 show dual spin relaxation dynamics under the presence of an applied dc magnetic field (Hdc), with the occurrence of faster- (FR) and slower-relaxing (SR) processes at lower (Hdc = 1.0 kOe) and higher fields (Hdc = 2.5 kOe), respectively. On the contrary, 3 and 4 exhibit only SR and FR relaxations, regardless of Hdc. Overall, the distinct field-dependence of the single-molecule magnet (SMM) behaviour along with this family of spin-crossover (SCO) cobalt(II)-n-XPhPDI complexes is dominated by Raman mechanisms and, occasionally, with additional temperature-independent Intra-Kramer [LS or HS (D > 0)] or Quantum Tunneling of Magnetisation mechanisms [HS (D < 0)] also contributing.

2.
Dalton Trans ; 53(9): 3994-4004, 2024 Feb 27.
Artigo em Inglês | MEDLINE | ID: mdl-38226629

RESUMO

A three-dimensional terbium(III) coordination polymer of formula [Tb(bttb)0.5(2,5-pzdc)0.5]n (1) [H4bttb = 1,2,4,5-tetrakis(4'-carboxyphenyl)benzene and H2-2,5-pzdc = 2,5-pyrazinedicarboxylic acid] was obtained under hydrothermal conditions. The bttb4- tetraanion in 1 adopts the bridging and chelating-bridging pseudo-oxo coordination modes while the 2,5-pzdc2- dianion exhibits a rather unusual bis-bidentate bridging pseudo-oxo coordination mode, both ligands being responsible for the stiffness of the resulting 3D structure. Solid-state photoluminescent measurements illustrate that 1 exhibits remarkable green luminescence emission, the most intense band occurring in the region of 550 nm (5D4 → 7F5) with lifetimes at the millisecond scale. Thermometric performances of 1 reveal a maximum relative sensitivity (Sm) of 0.76% K-1 at 295 K (δT = 0.05 K), constituting a TbIII ratiometric solid luminescent thermometer over the physiological temperature range. Variable-temperature static (dc) magnetic susceptibility measurements for 1 in the temperature range 2.0-300 K show the expected behavior for the depopulation of the splitted mJ levels of the 7F7 ground state of the magnetically anisotropic terbium(III) ion plus a weak antiferromagnetic interaction through the carboxylate bridges. No significant out-of-phase magnetic susceptibility signals were observed for 1 in the temperature range 2.0-10.0 K, either in the absence or presence of a static dc magnetic field.

3.
Chem Sci ; 14(33): 8850-8859, 2023 Aug 23.
Artigo em Inglês | MEDLINE | ID: mdl-37621442

RESUMO

The ability of mononuclear first-row transition metal complexes as dynamic molecular systems to perform selective functions under the control of an external stimulus that appropriately tunes their properties may greatly impact several domains of molecular nanoscience and nanotechnology. This study focuses on two mononuclear octahedral cobalt(ii) complexes of formula {[CoII(HL)2][CoII(HL)L]}(ClO4)3·9H2O (1) and [CoIIL2]·5H2O (2) [HL = 4'-(4-carboxyphenyl)-2,2':6',2''-terpyridine], isolated as a mixed protonated/hemiprotonated cationic salt or a deprotonated neutral species. This pair of pH isomers constitutes a remarkable example of a dynamic molecular system exhibiting reversible changes in luminescence, redox, and magnetic (spin crossover and spin dynamics) properties as a result of ligand deprotonation, either in solution or solid state. In this last case, the thermal-assisted spin transition coexists with the field-induced magnetisation blockage of "faster" or "slower" relaxing low-spin CoII ions in 1 or 2, respectively. In addition, pH-reversible control of the acid-base equilibrium among dicationic protonated, cationic hemiprotonated, and neutral deprotonated forms in solution enhances luminescence in the UV region. Besides, the reversibility of the one-electron oxidation of the paramagnetic low-spin CoII into the diamagnetic low-spin CoIII ion is partially lost and completely restored by pH decreasing and increasing. The fine-tuning of the optical, redox, and magnetic properties in this novel class of pH-responsive, spin crossover molecular nanomagnets offers fascinating possibilities for advanced multifunctional and multiresponsive magnetic devices for molecular spintronics and quantum computing such as pH-effect spin quantum transformers.

4.
Int J Mol Sci ; 24(11)2023 May 26.
Artigo em Inglês | MEDLINE | ID: mdl-37298251

RESUMO

A new sustainable heterogeneous catalyst for copper-catalyzed azide-alkyne cycloaddition reaction (CuAAC) was investigated. The preparation of the sustainable catalyst was carried out through the complexation reaction between the polysaccharide cellulose acetate backbone (CA) and copper(II) ions. The resulting complex [Cu(II)-CA] was fully characterized by using different spectroscopic methods such as Fourier-transform infrared spectroscopy (FTIR), Scanning Electron Microscopy (SEM), Energy Dispersive X-ray (EDX), Ultraviolet-visible (UV-vis), and Inductively Coupled Plasma (ICP) analyses. The Cu(II)-CA complex exhibits high activity in the CuAAC reaction for substituted alkynes and organic azides, leading to a selective synthesis of the corresponding 1,4-isomer 1,2,3-triazoles in water as a solvent and working at room temperature. It is worth noting that this catalyst has several advantages from the sustainable chemistry point of view including no use of additives, biopolymer support, reactions carried out in water at room temperature, and easy recovery of the catalyst. These characteristics make it a potential candidate not only for the CuAAC reaction but also for other catalytic organic reactions.


Assuntos
Cobre , Água , Cobre/química , Água/química , Reação de Cicloadição , Azidas/química , Alcinos/química , Catálise
5.
Molecules ; 28(11)2023 May 29.
Artigo em Inglês | MEDLINE | ID: mdl-37298899

RESUMO

Two mononuclear nickel(II) complexes of the formula [Ni(terpyCOOH)2](ClO4)2∙4H2O (1) and [Ni(terpyepy)2](ClO4)2 MeOH (2) [terpyCOOH = 4'-carboxyl-2,2':6',2″-terpyridine and terpyepy = 4'-[(2-pyridin-4-yl)ethynyl]-2,2':6',2″-terpyridine] have been prepared and their structures determined by single-crystal X-ray diffraction. Complexes 1 and 2 are mononuclear compounds, where the nickel(II) ions are six-coordinate by the six nitrogen atoms from two tridentate terpy moieties. The mean values of the equatorial Ni-N bond distances [2.11(1) and 2.12(1) Å for Ni(1) at 1 and 2, respectively, are somewhat longer than the axial ones [2.008(6) and 2.003(6) Å (1)/2.000(1) and 1.999(1) Å (2)]. The values of the shortest intermolecular nickel-nickel separation are 9.422(1) (1) and 8.901(1) Å (2). Variable-temperature (1.9-200 K) direct current (dc) magnetic susceptibility measurements on polycrystalline samples of 1 and 2 reveal a Curie law behavior in the high-temperature range, which corresponds to magnetically isolated spin triplets, the downturn of the χMT product at lower temperatures being due to zero-field splitting effects (D). Values of D equal to -6.0 (1) and -4.7 cm-1 (2) were obtained through the joint analysis of the magnetic susceptibility data and the field dependence of the magnetization. These results from magnetometry were supported by theoretical calculations. Alternating current (ac) magnetic susceptibility measurements of 1 and 2 in the temperature range 2.0-5.5 K show the occurrence of incipient out-phase signals under applied dc fields, a phenomenon that is characteristic of field-induced Single-Molecule Magnet (SMM) behavior, which herein concerns the 2 mononuclear nickel(II) complexes. This slow relaxation of the magnetization in 1 and 2 has its origin in the axial compression of the octahedral surrounding at their nickel(II) ions that leads to negative values of D. A combination of an Orbach and a direct mechanism accounts for the field-dependent relation phenomena in 1 and 2.


Assuntos
Imãs , Níquel , Níquel/química , Modelos Moleculares , Cristalografia por Raios X , Íons
6.
Molecules ; 28(5)2023 Feb 23.
Artigo em Inglês | MEDLINE | ID: mdl-36903333

RESUMO

Herein, we describe the synthesis, crystal structure, and electronic properties of {[K2(dmso)(H2O)5][Ni2(H2mpba)3]·dmso·2H2O}n (1) and [Ni(H2O)6][Ni2(H2mpba)3]·3CH3OH·4H2O (2) [dmso = dimethyl sulfoxide; CH3OH = methanol; and H4mpba = 1,3-phenylenebis(oxamic acid)] bearing the [Ni2(H2mpba)3]2- helicate, hereafter referred to as {NiII2}. SHAPE software calculations indicate that the coordination geometry of all the NiII atoms in 1 and 2 is a distorted octahedron (Oh) whereas the coordination environments for K1 and K2 atoms in 1 are Snub disphenoid J84 (D2d) and distorted octahedron (Oh), respectively. The {NiII2} helicate in 1 is connected by K+ counter cations yielding a 2D coordination network with sql topology. In contrast to 1, the electroneutrality of the triple-stranded [Ni2(H2mpba)3] 2- dinuclear motif in 2 is achieved by a [Ni(H2O)6]2+ complex cation, where the three neighboring {NiII2} units interact in a supramolecular fashion through four R22(10) homosynthons yielding a 2D array. Voltammetric measurements reveal that both compounds are redox active (with the NiII/NiI pair being mediated by OH- ions) but with differences in formal potentials that reflect changes in the energy levels of molecular orbitals. The NiII ions from the helicate and the counter-ion (complex cation) in 2 can be reversibly reduced, resulting in the highest faradaic current intensities. The redox reactions in 1 also occur in an alkaline medium but at higher formal potentials. The connection of the helicate with the K+ counter cation has an impact on the energy levels of the molecular orbitals; this experimental behavior was further supported by X-ray absorption near-edge spectroscopy (XANES) experiments and computational calculations.

7.
Dalton Trans ; 51(32): 12258-12270, 2022 Aug 16.
Artigo em Inglês | MEDLINE | ID: mdl-35895288

RESUMO

Five cobalt(II) complexes of formula [CoCl2(Ln)2] [1 with L1 = 1-benzyl-2-phenyl-1H-benzimidazole, 2 with L2 = 2-(furan-2-yl)-1-(furan-2-ylmethyl)-1H-benzimidazole, 3 with L3 = 1-(4-chlorobenzyl)-2-(4-chlorophenyl)-1H-benzimidazole, 4 with L4 = 1-(2-methoxybenzyl)-2-(2-methoxyphenyl)-1H-benzimidazole and 5 with L5 = 2-(thiophen-2-yl)-1-(thiophen-2-ylmethyl)-1H-benzimidazole] have been synthesised, spectroscopically characterised and cryomagnetically investigated. The crystal structures of 1, 3, 4 and 5 have been determined by X-ray diffraction on single crystals. Each cobalt(II) ion is four-coordinate in a distorted tetrahedral environment built by two chloride anions and two benzimidazole ligands. The neutral molecules are well separated from each other, shortest intermolecular cobalt⋯cobalt distances being greater than 9.0 Å. Static (dc) magnetic susceptibility measurements in the temperature range 2.0-300 K of 1-5 reveal the occurrence of a Curie law behaviour of magnetically non-interacting spin quadruplets in the high-temperature domain with a downturn at low temperatures due to magnetic anisotropy. The values of the D and E/D parameters for these compounds vary in the ranges -8.75 to +8.96 cm-1 and 0.00140 to 0.23, respectively. Dynamic (ac) magnetic susceptibility measurements of 1-5 show slow magnetic relaxation in the lack (1) or under the presence (1-5) of applied dc magnetic fields, a feature which is typical of single-molecule magnet behaviour (SMM). The analysis of the ac data shows that a thermally activated Orbach relaxation mechanism dominates this behaviour. Complexes 1-5 also act as efficient and highly selective eco-friendly catalysts in the coupling reaction between CO2 and epoxides to produce cyclic carbonates under solvent-free conditions. Under optimized reaction conditions, different epoxides were converted to the respective cyclic carbonate, with excellent conversions, using catalyst 4.

8.
Inorg Chem ; 61(15): 5696-5700, 2022 Apr 18.
Artigo em Inglês | MEDLINE | ID: mdl-35385259

RESUMO

The cobalt(II)-mediated self-assembly of the potentially tris(chelating) N,N'-2,2'-(4,4'-bithiazole)bis(oxamate) (dabtzox) ligand gives a new metal-organic supramolecular nanomagnet of formula K6Co3(dabtzox)3·8H2O·MeOH (1) featuring a unique linear triple-stranded trinuclear structure of the helicate type.

9.
Dalton Trans ; 51(12): 4760-4771, 2022 Mar 22.
Artigo em Inglês | MEDLINE | ID: mdl-35244632

RESUMO

A unique π-conjugated benzothiadiazole-ortho-vanillin ligand (HL), characterized by single crystal X-ray diffraction and DFT calculations, has been prepared by condensation between 4-amino-benzothiadiazole (BTD) and ortho-vanillin. Its reaction with cobalt(II) acetate afforded the complex of formula [CoL2]·CH2Cl2 (1), for which the coordination environment of the cobalt centre is a distorted octahedron and the ligand acts as a monoanionic tridentate NNO chelate in its phenolate form. Intermolecular π-π stacking interactions between the π-conjugated BTD units provide an antiferromagnetic coupling pathway, as indicated by the analysis of the dc magnetic measurements of a crystalline sample of the complex and supported by DFT type calculations. The static magnetic behaviour of 1 is analysed according to spin-orbit coupling and zero-field splitting models. Remarkably, the complex exhibits slow relaxation of the magnetization under dc applied magnetic fields being thus a new example of field-induced mononuclear single-molecule magnet (SMM).

10.
Int J Mol Sci ; 23(4)2022 Feb 21.
Artigo em Inglês | MEDLINE | ID: mdl-35216495

RESUMO

The copper(I)-catalyzed azide-alkyne cycloaddition (CuAAC) reaction is considered to be the most representative ligation process within the context of the "click chemistry" concept. This CuAAC reaction, which yields compounds containing a 1,2,3-triazole core, has become relevant in the construction of biologically complex systems, bioconjugation strategies, and supramolecular and material sciences. Although many CuAAC reactions are performed under homogenous conditions, heterogenous copper-based catalytic systems are gaining exponential interest, relying on the easy removal, recovery, and reusability of catalytically copper species. The present review covers the most recently developed copper-containing heterogenous solid catalytic systems that use solid inorganic/organic hybrid supports, and which have been used in promoting CuAAC reactions. Due to the demand for 1,2,3-triazoles as non-classical bioisosteres and as framework-based drugs, the CuAAC reaction promoted by solid heterogenous catalysts has greatly improved the recovery and removal of copper species, usually by simple filtration. In so doing, the solving of the toxicity issue regarding copper particles in compounds of biological interest has been achieved. This protocol is also expected to produce a practical chemical process for accessing such compounds on an industrial scale.


Assuntos
Alcinos/química , Azidas/química , Cobre/química , Reação de Cicloadição/métodos , Catálise , Química Click/métodos , Triazóis/química
11.
Dalton Trans ; 50(44): 16353-16363, 2021 Nov 16.
Artigo em Inglês | MEDLINE | ID: mdl-34734603

RESUMO

We describe herein the first examples of six-coordinate CoII single-ion magnets (SIMs) based on the ß-diimine Mebik ligand [Mebik = bis(1-methylimidazol-2-yl)ketone]: two mononuclear [CoII(Rbik)2L2] complexes and one mixed-valence {CoIII2CoII}n chain of formulas [CoII(Mebik)(H2O)(dmso)(µ-NC)2CoIII2(µ-2,5-dpp)(CN)6]n·1.4nH2O (3) [L = NCS (1), NCSe (2) and 2,5-dpp = 2,5-bis(2-pyridyl)pyrazine (3)]. Two bidentate Mebik molecules plus two monodentate N-coordinated pseudohalide groups in cis positions build somewhat distorted octahedral surroundings around the high-spin cobalt(II) ions in 1 and 2. The diamagnetic [CoIII2(µ-2,5-dpp)(CN)8]2- metalloligand coordinates the paramagnetic [CoII(Mebik)(H2O)(dmso)]2+ complex cations in a bis-monodentate fashion to afford neutral zigzag heterobimetallic chains in 3. Ab initio calculations, and cryomagnetic dc (2.0-300 K) and ac (2.0-12 K) measurements as well as EPR spectroscopy for 1-3 show the existence of magnetically isolated high-spin cobalt(II) ions with D values of 59.84-89.90 (1), 66.32-93.90 (2) and 70.40-127.20 cm-1 (3) and field-induced slow relaxation of the magnetization, being thus new examples of SIMs with transversal magnetic anisotropy. The analysis of their relaxation dynamics reveals that the relaxation of the magnetization occurs by the Raman (with values of the n parameter covering the range 6.0-6.8) and direct spin-phonon processes.

12.
Dalton Trans ; 50(41): 14640-14652, 2021 Oct 26.
Artigo em Inglês | MEDLINE | ID: mdl-34581372

RESUMO

A new series of cyanido-bridged {FeIIILnIII}2 neutral molecular squares of general formula [Fe{HB(pz)3}(CN)(µ-CN)2Ln(NO3)2(pyim)(Ph3PO)]2·2CH3CN [Ln = Ce (1), Pr (2), Nd (3), Gd (4), Tb (5), Dy (6) and Er (7); {HB(pz)3}- = hydrotris(pyrazolyl)borate, pyim = 2-(1H-imidazol-2-yl)pyridine and Ph3PO = triphenylphosphine oxide] were obtained by reacting the low-spin [Fe{HB(pz)3}(CN)3]- species with the preformed [LnIII(pyim)(NO3)2(pyim)(Ph3PO)]+ complex anions (generated in situ by mixing the nitrate salt of each Ln(III) ion with pyim and Ph3PO molecules). Single-crystal X-ray diffraction studies show that 1-7 are isostructural compounds that crystallize in the triclinic P1̄ space group. Their crystal structures consist of centrosymmetric cyanido-bridged {FeIIILnIII}2 molecular squares where two [Fe{HB(pz)3}(CN)3]- units adopt bis-monodentate coordination modes towards two [LnIII(pyim)(NO3)2(pyim)(Ph3PO)]+ moieties. The cis-oriented convergent sites from both low-spin FeIII and LnIII fragments form a quasi square-shaped molecule in which the 3d and 4f ions alternatively occupy the corners of the square. Both FeIII ions show a distorted octahedral surrounding (C3v symmetry), whereas the LnIII ions exhibit a distorted muffin-like geometry (Cs symmetry) in 1-7. The intramolecular FeIII⋯LnIII distances across the two cyanido-bridges range from ca. 5.48/5.46 up to ca. 5.58/5.61 Å. The molecular squares in 1-7 are interlinked through hydrogen bonds, weak π⋯π stacking and very weak C-H⋯π type interactions into three-dimensional supramolecular networks. The analysis of the solid-state direct-current (dc) magnetic susceptibility data of 1-7 in the temperature range 1.9-300 K reveals the occurrence of weak intra- and intermolecular antiferromagnetic interactions. The small intramolecular antiferromagnetic couplings in 4 compare well with those previously reported for parent systems. Although the coexistence of the spin-orbit coupling (SOC) of the low-spin iron(III) and lanthanide(III) ions in the remaining compounds together with the ligand field effects mask the visualization and make difficult the evaluation of the possible magnetic interactions in them, we were able to do it through a SOC model applied on exact or effective Hamiltonians. Frequency-dependent alternating current magnetic susceptibility signals in the temperature range 2.0-9.0 K under zero and non-zero static fields were observed for 5-7 which indicate slow magnetic relaxation (SMM) behavior. The usual absence of χ''M maxima moved us to estimate their energy barriers through ln(χ''M/ χ'M) vs. 1/T plots, obtaining values from 25 to 40 cm-1.

13.
Dalton Trans ; 50(36): 12430-12434, 2021 Sep 21.
Artigo em Inglês | MEDLINE | ID: mdl-34545875

RESUMO

We report the unique heterobimetallic dodecanuclear oxamate-based {CoII6CuII6} nanowheel obtained using an environmentally friendly synthetic protocol. The effective Hamiltonian methodology employed herein allows the rationalisation of magnetic isotropic or anisotropic metal clusters, being a significant advance for future studies of exciting properties only observed at low and ultralow temperatures.

14.
Inorg Chem ; 60(17): 12719-12723, 2021 Sep 06.
Artigo em Inglês | MEDLINE | ID: mdl-34424680

RESUMO

The coexistence of field-induced blockage of the magnetization and significant magnetocaloric effects in the low-temperature region occurs in a mononuclear holmium(III) diethylenetriamine-N,N,N',N″,N″-pentaacetate complex, whose gadolinium(III) analogue is a commercial MRI contrast agent. Both properties make it a suitable candidate for cryogenic magnetic refrigeration, thus enlarging the variety of applications of this simple class of multifunctional molecular nanomagnets.


Assuntos
Complexos de Coordenação/química , Hólmio/química , Imãs/química , Ácido Pentético/química , Refrigeração/métodos , Temperatura Baixa , Fenômenos Magnéticos
15.
Dalton Trans ; 50(31): 10707-10728, 2021 Aug 21.
Artigo em Inglês | MEDLINE | ID: mdl-34308946

RESUMO

In this work, we present the synthetic pathway, a refined structural description, complete solid-state characterization and the magnetic properties of four new cobalt(ii) compounds of formulas [Co(H2O)6][Co2(H2mpba)3]·2H2O·0.5dmso (1), [Co(H2O)6][Co2(H2mpba)3]·3H2O·0.5dpss (2), [Co2(H2mpba)2(H2O)4]n·4nH2O (3), and [Co2(H2mpba)2(CH3OH)2(H2O)2]n·0.5nH2O·2ndpss (4) [dpss = 2,2'-dipyridyldisulfide and H4mpba = 1,3-phenylenebis(oxamic) acid], where 2 and 4 were obtained from [Co(dpss)Cl2] (Pre-I) as the source of cobalt(ii). All four compounds are air-stable and were prepared under ambient conditions. 1 and 2 were obtained from a slow diffusion method [cobalt(ii) : H2mpba2- molar ratio used 1 : 1] and their structures are made up of [Co2(H2mpba)3]2- anionic helicate units and [Co(H2O)6]2+ cations, exhibiting supramolecular three-dimensional structures. Interestingly, a supramolecular honeycomb network between the helicate units interacting with each other through R22(10) type hydrogen bonds occurs in 2 hosting one co-crystallized dpss molecule. On the other hand, for the first time, linear (3) and zigzag (4) cobalt(ii) chains were isolated by slow evaporation of stirred solutions of mixed solvents with cobalt(ii) : H2mpba2- in 1 : 2 molar ratio at room temperature. Magnetic measurements of Pre-I revealed a quasi magnetically isolated S = 3/2 spin state with a significant second-order spin-orbit contribution as expected for tetrahedrally coordinated cobalt(ii) ions. The analysis of the variable temperature static (dc) magnetic susceptibility data through first- (1 and 3) and second-order spin-orbit coupling models (2 and 4) reveals the presence of magnetically non-interacting high-spin cobalt(ii) ions with easy-axis (1 and 4)/easy-plane magnetic anisotropies (2 and 4) with low rhombic distortions. Dynamic (ac) magnetic measurements for Pre-I and 1-4 below 8.0 K show that they are examples of field-induced Single-Ion Magnets (SIMs).

16.
Molecules ; 26(9)2021 May 10.
Artigo em Inglês | MEDLINE | ID: mdl-34068482

RESUMO

Two novel copper(II) complexes of formulas {[Cu(4-Hmpz)4][Cu(4-Hmpz)2(µ3-ox-κ2O1,O2:κO2':κO1')(ClO4)2]}n (1) and {[Cu(3,4,5-Htmpz)4]2[Cu(3,4,5-Htmpz)2(µ3-ox-κ2O1,O2:κO2':κO1')(H2O)(ClO4)]2[Cu2(3,4,5-Htmpz)4(µ-ox-κ2O1,O2:κ2O2',O1')]}(ClO4)4·6H2O (2) have been obtained by using 4-methyl-1H-pyrazole (4-Hmpz) and 3,4,5-trimethyl-1H-pyrazole (3,4,5-Htmpz) as terminal ligands and oxalate (ox) as the polyatomic inverse coordination center. The crystal structure of 1 consists of perchlorate counteranions and cationic copper(II) chains with alternating bis(pyrazole)(µ3-κ2O1,O2:κO2':κO1'-oxalato)copper(II) and tetrakis(pyrazole)copper(II) fragments. The crystal structure of 2 is made up of perchlorate counteranions and cationic centrosymmetric hexanuclear complexes where an inner tetrakis(pyrazole)(µ-κ2O1,O2:κ2O2',O1'-oxalato)dicopper(II) entity and two outer mononuclear tetrakis(pyrazole)copper(II) units are linked through two mononuclear aquabis(pyrazole)(µ3-κ2O1,O2:κO2':κO1'-oxalato)copper(II) units. The magnetic properties of 1 and 2 were investigated in the temperature range 2.0-300 K. Very weak intrachain antiferromagnetic interactions between the copper(II) ions through the µ3-ox-κ2O1,O2:κO2':κO1' center occur in 1 [J = -0.42(1) cm-1, the spin Hamiltonian being defined as H = -J∑S1,i · S2,i+1], whereas very weak intramolecular ferromagnetic [J = +0.28(2) cm-1] and strong antiferromagnetic [J' = -348(2) cm-1] couplings coexist in 2 which are mediated by the µ3-ox-κ2O1,O2:κO2':κO1' and µ-ox-κ2O1,O2:κ2O2',O1' centers, respectively. The variation in the nature and magnitude of the magnetic coupling for this pair of oxalato-centered inverse copper(II) complexes is discussed in the light of their different structural features, and a comparison with related oxalato-centered inverse copper(II)-pyrazole systems from the literature is carried out.

17.
Inorg Chem ; 60(9): 6176-6190, 2021 May 03.
Artigo em Inglês | MEDLINE | ID: mdl-33861078

RESUMO

The reaction of aqueous solutions of EuIII, TbIII, and GdIII ions with Na2Hpcpa [H3pcpa = N-(4-carboxyphenyl)oxamic acid] afforded three new isostructural oxamate-containing lanthanide(III) coordination polymers of general formula {LnIII2(Hpcpa)3(H2O)5·H2O}n [Ln = Eu (1),Tb (2), and Gd(3)]. Their structure is made up of neutral zigzag chains running parallel to the [101] direction where double syn-syn carboxylate(oxamate)-bridged dilanthanide(III) pairs (Ln1 and Ln2) are linked by three Hpcpa2- ligands, one of them with the µ-κ2O,O':κO″ coordination mode and the other two with the µ3-κ2O,O':κO″:κO'''. Additionally, two of those chains are interlinked through hydrogen bonding and π-π type interactions, resulting in a porous structure with channels where water molecules are hosted. The emission properties of 1 and 2 are evaluated as a function of the temperature, exhibiting an emission in red and green, respectively. The external quantum yield for 2 is approximately 7 times that obtained for 1, indicating that the oxamate ligand is a better sensitizer for TbIII ions. The temperature dependence of the dc magnetic properties of 1-3 reveals a different magnetic behavior depending on the nature of the LnIII ion. A continuous decrease of χMT occurs for 1 upon cooling, and finally χMT tends to vanish, as expected for the thermal depopulation of the six magnetic 7FJ excited states (J = 1-6) of the EuIII ion with a nonmagnetic 7F0 ground state. χMT for 2 decreases sharply with decreasing the temperature due to the depopulation of the splitted mJ levels of the 7F7 ground state of the magnetically anisotropic TbIII ion. A very weak antiferromagnetic interaction between the magnetically isotropic GdIII ions across the double carboxylate(oxamate) bridge is responsible for the small decrease of χMT at low temperatures for 3. The dynamic (ac) magnetic properties of 2 and 3 reveal a slow magnetic relaxation with very incipient frequency-dependent χM″ signals below 6.0 K (2) and frequency-dependent χM″ peaks below 10.0 K (3) under nonzero applied dc magnetic fields, being thus new examples of field-induced single molecule magnets (SMMs).

18.
Molecules ; 26(8)2021 Apr 07.
Artigo em Inglês | MEDLINE | ID: mdl-33917122

RESUMO

Four new compounds of formulas [Cu(hfac)2(L)] (1), [Ni(hfac)2(L)] (2), [{Cu(hfac)2}2(µ-L)]·2CH3OH (3) and [{Ni(hfac)2}2(µ-L)]·2CH3CN (4) [Hhfac = hexafluoroacetylacetone and L = 3,6-bis(picolylamino)-1,2,4,5-tetrazine] have been prepared and their structures determined by X-ray diffraction on single crystals. Compounds 1 and 2 are isostructural mononuclear complexes where the metal ions [copper(II) (1) and nickel(II) (2)] are six-coordinated in distorted octahedral MN2O4 surroundings which are built by two bidentate hfac ligands plus another bidentate L molecule. This last ligand coordinates to the metal ions through the nitrogen atoms of the picolylamine fragment. Compounds 3 and 4 are centrosymmetric homodinuclear compounds where two bidentate hfac units are the bidentate capping ligands at each metal center and a bis-bidentate L molecule acts as a bridge. The values of the intramolecular metal···metal separation are 7.97 (3) and 7.82 Å (4). Static (dc) magnetic susceptibility measurements were carried out for polycrystalline samples 1-4 in the temperature range 1.9-300 K. Curie law behaviors were observed for 1 and 2, the downturn of χMT in the low temperature region for 2 being due to the zero-field splitting of the nickel(II) ion. Very weak [J = -0.247(2) cm-1] and relatively weak intramolecular antiferromagnetic interactions [J = -4.86(2) cm-1] occurred in 3 and 4, respectively (the spin Hamiltonian being defined as H = -JS1·S2). Simple symmetry considerations about the overlap between the magnetic orbitals across the extended bis-bidentate L bridge in 3 and 4 account for their magnetic properties.

19.
Dalton Trans ; 50(11): 3801-3805, 2021 Mar 21.
Artigo em Inglês | MEDLINE | ID: mdl-33721007

RESUMO

The coexistence of field-induced slow magnetic relaxation and moderately large magnetocaloric efficiency in the supra-Kelvin temperature region occurs in the 2D compound [Gd(ox)3(H2O)6]n·4nH2O (1), a feature that can be exploited in the proof-of-concept design of a new class of slow-relaxing magnetic materials for cryogenic magnetic refrigeration.

20.
Int J Mol Sci ; 23(1)2021 Dec 21.
Artigo em Inglês | MEDLINE | ID: mdl-35008481

RESUMO

This review accounts for the most recent and significant research results from the literature on the design and synthesis of 1,2,3-triazole compounds and their usefulness as molecular well-defined corrosion inhibitors for steels, copper, iron, aluminum, and their alloys in several aggressive media. Of particular interest are the 1,4-disubstituted 1,2,3-triazole derivatives prepared in a regioselective manner under copper-catalyzed azide-alkyne cycloaddition (CuAAC) click reactions. They are easily and straightforwardly prepared compounds, non-toxic, environmentally friendly, and stable products to the hydrolysis under acidic conditions. Moreover, they have shown a good efficiency as corrosion inhibitors for metals and their alloys in different acidic media. The inhibition efficiencies (IEs) are evaluated from electrochemical impedance spectroscopy (EIS) parameters with different concentrations and environmental conditions. Mechanistic aspects of the 1,2,3-triazoles mediated corrosion inhibition in metals and metal alloy materials are also overviewed.


Assuntos
Azidas/farmacologia , Metais/química , Triazóis/farmacologia , Azidas/química , Catálise , Química Click , Corrosão , Reação de Cicloadição , Estrutura Molecular , Propriedades de Superfície/efeitos dos fármacos , Triazóis/química
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA