Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 2 de 2
Filtrar
Mais filtros








Base de dados
Intervalo de ano de publicação
1.
Int J Endocrinol ; 2023: 7625720, 2023.
Artigo em Inglês | MEDLINE | ID: mdl-37101600

RESUMO

Objective: Obesity is one of the modifiable risk factors for dementia. Insulin resistance, the abundance of advanced glycated end-products, and inflammation are some of the mechanisms associated with the lower cognitive performance observed in obesity. This study aims to evaluate the cognitive function of subjects with distinct degrees of obesity, comparing class I and II obesity (OBI/II) to class III obesity (OBIII), and to investigate metabolic markers that can distinguish OBIII from OBI/II. Study Design. This is a cross-sectional study, in which 45 females with BMI varying from 32.8 to 51.9 kg/m2 completed a set of 4 cognitive tests (verbal paired-associate test, stroop color, digit span, and Toulouse-Pieron cancellation test) and their plasma metabolites, enzymes, and hormones related to glycemia, dyslipidemia, and liver function, as well as the biomarkers of iron status, were concomitantly analyzed. Results: OBIII showed lower scores in the verbal paired-associate test compared to OBI/II. In other cognitive tests, both groups showed similar performance. OBIII presented a lower iron status compared to OBI/II based on total iron binding capacity, degree of transferrin saturation, hemoglobin, mean corpuscular volume, and mean corpuscular hemoglobin. The levels of indicators for glycemia, liver function, and lipid metabolism were similar in both groups. Analysis of plasma metabolites showed that OBIII had lower levels of pyroglutamic acid, myoinositol, and aspartic acid and higher levels of D-ribose than OBI/II. Conclusion: Iron is an essential micronutrient for several metabolic pathways. Thus, iron dyshomeostasis observed in severe obesity may aggravate the cognitive impairment by altering metabolic homeostasis and enhancing oxidative stress. These findings can contribute to searching for biomarkers that indicate cognitive performance in the population with obesity.

2.
J Chromatogr B Biomed Appl ; 670(2): 332-6, 1995 Aug 18.
Artigo em Inglês | MEDLINE | ID: mdl-8548025

RESUMO

An assay is described for measurement of purine nucleoside phosphorylase (PNP) in plasma by high-performance liquid chromatography (HPLC). A plasma sample was incubated with hypoxanthine and ribose-1-phosphate in phosphate-free medium at pH 7.4 to catalyse the production of inosine by plasmatic PNP. The reaction was stopped by addition of perchloric acid to inactivate the enzyme and to precipitate plasma proteins. After centrifugation and neutralization of the supernatant with NaOH the increase in the substrate inosine was determined by HPLC. Plasma activities of PNP averaged 5.0 mU/ml before and 12.3 mU/ml (p < 0.001), 5 min after porcine liver transplantation. At the same time points, the plasma activities of the frequently used liver enzymes lactate dehydrogenase or alanine aminotransferase remained virtually unchanged. Thus, plasmatic activities of PNP may be a suitable and early indicator of ischemic alterations to the graft in vivo.


Assuntos
Transplante de Fígado/fisiologia , Fígado/enzimologia , Purina-Núcleosídeo Fosforilase/sangue , Alanina Transaminase/sangue , Animais , Cromatografia Líquida de Alta Pressão , Hipoxantinas/análise , Indicadores e Reagentes , Inosina/análise , L-Lactato Desidrogenase/sangue , Fígado/fisiopatologia , Testes de Função Hepática , Fosfatos/análise , Suínos
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA