Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 15 de 15
Filtrar
Mais filtros








Base de dados
Intervalo de ano de publicação
1.
ACS Infect Dis ; 10(5): 1458-1482, 2024 05 10.
Artigo em Inglês | MEDLINE | ID: mdl-38661541

RESUMO

Efflux is a natural process found in all prokaryotic and eukaryotic cells that removes a diverse range of substrates from inside to outside. Many antibiotics are substrates of bacterial efflux pumps, and modifications to the structure or overexpression of efflux pumps are an important resistance mechanism utilized by many multidrug-resistant bacteria. Therefore, chemical inhibition of bacterial efflux to revitalize existing antibiotics has been considered a promising approach for antimicrobial chemotherapy over two decades, and various strategies have been employed. In this review, we provide an overview of bacterial multidrug resistance (MDR) efflux pumps, of which the resistance nodulation division (RND) efflux pumps are considered the most clinically relevant in Gram-negative bacteria, and describe over 50 efflux inhibitors that target such systems. Although numerous efflux inhibitors have been identified to date, none have progressed into clinical use because of formulation, toxicity, and pharmacokinetic issues or a narrow spectrum of inhibition. For these reasons, the development of efflux inhibitors has been considered a difficult and complex area of research, and few active preclinical studies on efflux inhibitors are in progress. However, recently developed tools, including but not limited to computational tools including molecular docking models, offer hope that further research on efflux inhibitors can be a platform for research and development of new bacterial efflux inhibitors.


Assuntos
Antibacterianos , Farmacorresistência Bacteriana Múltipla , Bactérias Gram-Negativas , Proteínas de Membrana Transportadoras , Antibacterianos/farmacologia , Antibacterianos/química , Bactérias Gram-Negativas/efeitos dos fármacos , Proteínas de Membrana Transportadoras/metabolismo , Farmacorresistência Bacteriana Múltipla/efeitos dos fármacos , Proteínas de Bactérias/metabolismo , Proteínas de Bactérias/antagonistas & inibidores , Humanos
2.
Angew Chem Int Ed Engl ; 62(40): e202306437, 2023 Oct 02.
Artigo em Inglês | MEDLINE | ID: mdl-37466921

RESUMO

Even with the aid of the available methods, the configurational assignment of natural products can be a challenging task that is prone to errors, and it sometimes needs to be corrected after total synthesis or single-crystal X-ray diffraction (XRD) analysis. Herein, the absolute configuration of amidochelocardin is revised using a combination of XRD, NMR spectroscopy, experimental ECD spectra, and time-dependent density-functional theory (TDDFT)-ECD calculations. As amidochelocardin was obtained via biosynthetic engineering of chelocardin, we propose the same absolute configuration for chelocardin based on the similar biosynthetic origins of the two compounds and result of TDDFT-ECD calculations. The evaluation of spectral data of two closely related analogues, 6-desmethyl-chelocardin and its semisynthetic derivative 1, also supports this conclusion.

3.
ACS Med Chem Lett ; 13(8): 1262-1269, 2022 Aug 11.
Artigo em Inglês | MEDLINE | ID: mdl-35978685

RESUMO

RAD51 is an ATP-dependent recombinase, recruited by BRCA2 to mediate DNA double-strand breaks repair through homologous recombination and represents an attractive cancer drug target. Herein, we applied for the first-time protein-templated dynamic combinatorial chemistry on RAD51 as a hit identification strategy. Upon design of N-acylhydrazone-based dynamic combinatorial libraries, RAD51 showed a clear templating effect, amplifying 19 N-acylhydrazones. Screening against the RAD51-BRCA2 protein-protein interaction via ELISA assay afforded 10 inhibitors in the micromolar range. Further 19F NMR experiments revealed that 7 could bind RAD51 and be displaced by BRC4, suggesting an interaction in the same binding pocket of BRCA2. These results proved not only that ptDCC could be successfully applied on full-length oligomeric RAD51, but also that it could address the need of alternative strategies toward the identification of small-molecule PPI inhibitors.

4.
Chem Sci ; 12(22): 7775-7785, 2021 Apr 28.
Artigo em Inglês | MEDLINE | ID: mdl-34168831

RESUMO

Target-directed dynamic combinatorial chemistry (tdDCC) enables identification, as well as optimization of ligands for un(der)explored targets such as the anti-infective target 1-deoxy-d-xylulose-5-phosphate synthase (DXPS). We report the use of tdDCC to first identify and subsequently optimize binders/inhibitors of the anti-infective target DXPS. The initial hits were also optimized for their antibacterial activity against E. coli and M. tuberculosis during subsequent tdDCC runs. Using tdDCC, we were able to generate acylhydrazone-based inhibitors of DXPS. The tailored tdDCC runs also provided insights into the structure-activity relationship of this novel class of DXPS inhibitors. The competition tdDCC runs provided important information about the mode of inhibition of acylhydrazone-based inhibitors. This approach holds the potential to expedite the drug-discovery process and should be applicable to a range of biological targets.

5.
J Med Chem ; 63(11): 6225-6237, 2020 06 11.
Artigo em Inglês | MEDLINE | ID: mdl-32379447

RESUMO

Matrix metalloproteinases (MMPs) are involved in a spectrum of physiological processes, rendering them attractive targets for small-molecule drug discovery. Strategies to achieve selective inhibition continue to be intensively pursued, facilitated by advances in structural biology. Herein, we harness MMPs 2, 8, 9, and 13 to validate the vicinal difluoro motif as a hybrid bioisostere of CF3 and Et (BITE) in a series of modified barbiturate inhibitors. Crystallographic analyses of representative structures reveal conformations of the vicinal difluoro motif that manifest stabilizing hyperconjugative interactions consistent with the stereoelectronic gauche effect. Detailed docking studies of a potent difluorinated probe with MMP-9 are also disclosed and indicate that the structural basis of inhibition is a consequence of the anisotropic nature of the motif. Significant selectivity of MMP 13 versus MMP-2 can be achieved by subtle chain contraction in a BITE-modified inhibitor.


Assuntos
Flúor/química , Inibidores de Metaloproteinases de Matriz/química , Metaloproteinases da Matriz/metabolismo , Barbitúricos/química , Barbitúricos/metabolismo , Sítios de Ligação , Domínio Catalítico , Cristalografia por Raios X , Isoenzimas/antagonistas & inibidores , Isoenzimas/metabolismo , Inibidores de Metaloproteinases de Matriz/metabolismo , Metaloproteinases da Matriz/química , Conformação Molecular , Simulação de Acoplamento Molecular , Relação Estrutura-Atividade
6.
Eur J Med Chem ; 188: 112005, 2020 Feb 15.
Artigo em Inglês | MEDLINE | ID: mdl-31911294

RESUMO

To address the global challenge of emerging antimicrobial resistance, the hitherto most successful strategy to new antibiotics has been the optimization of validated natural products; most of these efforts rely on semisynthesis. Herein, we report the semisynthetic modification of amidochelocardin, an atypical tetracycline obtained via genetic engineering of the chelocardin producer strain. We report modifications at C4, C7, C10 and C11 by the application of methylation, acylation, electrophilic substitution, and oxidative C-C coupling reactions. The antibacterial activity of the reaction products was tested against a panel of Gram-positive and Gram-negative pathogens. The emerging structure-activity relationships (SARs) revealed that positions C7 and C10 are favorable anchor points for the semisynthesis of optimized derivatives. The observed SAR was different from that known for tetracyclines, which underlines the pronounced differences between the two compound classes.


Assuntos
Antibacterianos/farmacologia , Bactérias Gram-Negativas/efeitos dos fármacos , Bactérias Gram-Positivas/efeitos dos fármacos , Tetraciclinas/farmacologia , Antibacterianos/síntese química , Antibacterianos/química , Relação Dose-Resposta a Droga , Testes de Sensibilidade Microbiana , Estrutura Molecular , Relação Estrutura-Atividade , Tetraciclinas/síntese química , Tetraciclinas/química
7.
Chem Sci ; 12(4): 1286-1294, 2020 Nov 23.
Artigo em Inglês | MEDLINE | ID: mdl-34163891

RESUMO

Single site OH → F substitution at the termini of maltotetraose leads to significantly improved hydrolytic stability towards α-amylase and α-glucosidase relative to the natural compound. To explore the effect of molecular editing, selectively modified oligosaccharides were prepared via a convergent α-selective strategy. Incubation experiments in purified α-amylase and α-glucosidase, and in human and murine blood serum, provide insight into the influence of fluorine on the hydrolytic stability of these clinically important scaffolds. Enhancements of ca. 1 order of magnitude result from these subtle single point mutations. Modification at the monosaccharide furthest from the probable enzymatic cleavage termini leads to the greatest improvement in stability. In the case of α-amylase, docking studies revealed that retentive C2-fluorination at the reducing end inverts the orientation in which the substrate is bound. A co-crystal structure of human α-amylase revealed maltose units bound at the active-site. In view of the evolving popularity of C(sp3)-F bioisosteres in medicinal chemistry, and the importance of maltodextrins in bacterial imaging, this discovery begins to reconcile the information-rich nature of carbohydrates with their intrinsic hydrolytic vulnerabilities.

8.
Angew Chem Int Ed Engl ; 58(32): 10990-10994, 2019 08 05.
Artigo em Inglês | MEDLINE | ID: mdl-31157945

RESUMO

Fluorinated motifs have a venerable history in drug discovery, but as C(sp3 )-F-rich 3D scaffolds appear with increasing frequency, the effect of multiple bioisosteric changes on molecular recognition requires elucidation. Herein we demonstrate that installation of a 1,3,5-stereotriad, in the substrate for a commonly used lipase from Pseudomonas fluorescens does not inhibit recognition, but inverts stereoselectivity. This provides facile access to optically active, stereochemically well-defined organofluorine compounds (up to 98 % ee). Whilst orthogonal recognition is observed with fluorine, the trend does not hold for the corresponding chlorinated substrates or mixed halogens. This phenomenon can be placed on a structural basis by considering the stereoelectronic gauche effect inherent to F-C-C-X systems (σ→σ*). Docking reveals that this change in selectivity (H versus F) with a common lipase results from inversion in the orientation of the bound substrate being processed as a consequence of conformation. This contrasts with the stereochemical interpretation of the biogenetic isoprene rule, whereby product divergence from a common starting material is also a consequence of conformation, albeit enforced by two discrete enzymes.

9.
Nat Commun ; 8(1): 2058, 2017 12 12.
Artigo em Inglês | MEDLINE | ID: mdl-29233959

RESUMO

General methods to prepare chiral pyridine derivatives are greatly sought after due to their significance in medicinal chemistry. Here, we report highly enantioselective catalytic transformations of poorly reactive ß-substituted alkenyl pyridines to access a wide range of alkylated chiral pyridines. The simple methodology involves reactivity enhancement via Lewis acid (LA) activation, the use of readily available and highly reactive Grignard reagents, and a copper-chiral diphosphine ligand catalyst. Apart from allowing the introduction of different linear, branched, cyclic, and functionalised alkyl chains at the ß-position of alkenyl pyridines, the catalytic system also shows high functional group tolerance.

10.
Angew Chem Int Ed Engl ; 56(11): 3041-3044, 2017 03 06.
Artigo em Inglês | MEDLINE | ID: mdl-28156047

RESUMO

Inexpensive and readily available organomagnesium reagents were used for the catalytic enantioselective alkylation of enolizable N-sulfonyl ketimines. The low reactivity and competing enolization of the ketimines was overcome by the use of a copper-phosphine chiral catalyst, which also rendered the transformation highly chemoselective and enantioselective for a broad range of ketimine substrates.

11.
Nat Commun ; 7: 13780, 2016 12 23.
Artigo em Inglês | MEDLINE | ID: mdl-28008909

RESUMO

α-Chiral amines are of significant importance in medicinal chemistry, asymmetric synthesis and material science, but methods for their efficient synthesis are scarce. In particular, the synthesis of α-chiral amines with the challenging tetrasubstituted carbon stereocentre is a long-standing problem and catalytic asymmetric additions of organometallic reagents to ketimines that would give direct access to these molecules are underdeveloped. Here we report a highly enantioselective catalytic synthesis of N-sulfonyl protected α-chiral silyl amines via the addition of inexpensive, easy to handle and readily available Grignard reagents to silyl ketimines. The key to this success was our ability to suppress any unselective background addition reactions and side reduction pathway, through the identification of an inexpensive, chiral Cu-complex as the catalytically active structure.

12.
Science ; 352(6284): 433-7, 2016 Apr 22.
Artigo em Inglês | MEDLINE | ID: mdl-27102477

RESUMO

Catalytic asymmetric conjugate addition reactions represent a powerful strategy to access chiral molecules in contemporary organic synthesis. However, their applicability to conjugated alkenyl-N-heteroaromatic compounds, of particular interest in medicinal chemistry, has lagged behind applications to other substrates. We report a highly enantioselective and chemoselective catalytic transformation of a wide range of ß-substituted conjugated alkenyl-N-heteroaromatics to their corresponding chiral alkylated products. This operationally simple methodology can introduce linear, branched, and cyclic alkyl chains, as well as a phenyl group, at the ß-carbon position. The key to this success was enhancement of the reactivity of alkenyl-heteroaromatic substrates via Lewis acid activation, in combination with the use of readily available and highly reactive Grignard reagents and a copper catalyst coordinated by a chiral chelating diphosphine ligand.

13.
Chem Asian J ; 10(2): 397-404, 2015 Feb.
Artigo em Inglês | MEDLINE | ID: mdl-25470334

RESUMO

The straightforward synthesis of polystyrene-supported Chinchona alkaloids and their application in the asymmetric dimerization of ketenes is reported. Six different immobilized derivatives, consisting of three dimeric and two monomeric 9-O ethers, were prepared by "click" anchoring of soluble alkaloid precursors on to azidomethyl resins. The resulting insoluble polymer-bound (IPB) organocatalysts were employed for promoting the dimerization of in-situ generated ketenes. After opening of the ketene dimer intermediates with N,O-dimethylhydroxylamine, valuable Weinreb amides were eventually obtained in good yield (up to 81 %) and excellent enantiomeric purity (up to 96 % ee). All of the IPB catalysts could be recycled effectively without significant loss of activity and enantioselectivity. The extension to other asymmetric transformations (meso-anhydride desymmetrization and α-amination of 2-oxindoles) is also briefly discussed.


Assuntos
Alcaloides de Cinchona/química , Polímeros/química , Alcinos/química , Catálise , Alcaloides de Cinchona/síntese química , Química Click , Cobre/química , Reação de Cicloadição , Dimerização , Etilenos/química , Cetonas/química , Poliestirenos/química , Estereoisomerismo
14.
J Colloid Interface Sci ; 439: 28-33, 2015 Feb 01.
Artigo em Inglês | MEDLINE | ID: mdl-25463172

RESUMO

A preparative protocol to synthesize large quantities of size-controlled gold nanoparticles (Au NPs), stabilized by CH3O-PEG5000-SH (PEG-SH) in aqueous medium, is reported. The combination of metal vapor synthesis (MVS) technique with digestive ripening process allowed to obtain PEGylated Au NPs with mean core particle size of 3.8nm and hydrodynamic diameters centered at 8.0nm which were effectively used as computed tomography (CT) contrast agents for in vivo experiments on mice. The surface functionalization together with the small hydrodynamic diameters of the engineered Au nanoparticles permitted their efficient renal clearance, still retaining a prolonged blood circulation and a stealth capability.


Assuntos
Meios de Contraste/síntese química , Ouro , Nanopartículas Metálicas , Tomografia Computadorizada por Raios X , Água/química , Animais , Meios de Contraste/normas , Camundongos , Tamanho da Partícula , Polietilenoglicóis/química
15.
Chirality ; 23(9): 784-95, 2011 Oct.
Artigo em Inglês | MEDLINE | ID: mdl-22135808

RESUMO

The enantioselective organocatalytic methanolysis of cis-1,2,3,6-tetrahydrophthalic anhydride mediated by quinidine derivatives with pyridazine or anthraquinone core was investigated, carrying out a detailed nuclear magnetic resonance study of the conformational preferences of the alkaloid catalysts in the pure solvent and in the presence of the reaction substrates and products. No significant interaction between the meso-anhydride and the alkaloid derivatives was detected. In contrast, evidence for a considerable influence of the alcohol reactant on the conformational state of some of the chiral organocatalysts could be obtained, which lends support to the hypothesis of general-base catalysis mechanism, as opposed to the nuclephilic one. The catalytic properties of the studied derivatives showed no obvious correlation with their conformational prevalence in the resting state, suggesting that the alkaloid 9-O substituent should have a more active role than merely enforcing the chiral fragments to adopt a preferential reactive conformation. A strong enantioselective interaction between the enantiomers of the hemiester product and the alkaloid derivatives was also observed, leading to the conclusion that in the actual reaction conditions a relatively large fraction of the latter is in the protonated form.

SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA