Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 43
Filtrar
1.
J Clin Lab Anal ; : e25081, 2024 Jun 17.
Artigo em Inglês | MEDLINE | ID: mdl-38884333

RESUMO

BACKGROUND: The global spread of extended-spectrum beta-lactamase (ESBL)-producing and carbapenem-resistant Enterobacterales (CRE) poses a significant concern. Acquisition of antimicrobial resistance genes leads to resistance against several antibiotics, limiting treatment options. We aimed to study ESBL-producing and CRE transmission in clinical settings. METHODS: From clinical samples, 227 ESBL-producing and CRE isolates were obtained. The isolates were cultured on bacterial media and confirmed by VITEK 2. Antibiograms were tested against several antibiotics using VITEK 2. The acquired resistance genes were identified by PCR. RESULTS: Of the 227 clinical isolates, 145 (63.8%) were Klebsiella pneumoniae and 82 (36.1%) were Escherichia coli; 76 (33.4%) isolates were detected in urine, 57 (25.1%) in pus swabs, and 53 (23.3%) in blood samples. A total of 58 (70.7%) ESBL-producing E. coli were resistant to beta-lactams, except for carbapenems, and 17.2% were amikacin-resistant; 29.2% of E. coli isolates were resistant to carbapenems. A total of 106 (73.1%) ESBL-producing K. pneumoniae were resistant to all beta-lactams, except for carbapenems, and 66.9% to ciprofloxacin; 38 (26.2%) K. pneumoniae were resistant to carbapenems. Colistin emerged as the most effective antibiotic against both bacterial types. Twelve (20.6%) E. coli isolates were positive for blaCTX-M, 11 (18.9%) for blaTEM, and 8 (33.3%) for blaNDM. Forty-six (52.3%) K. pneumoniae isolates had blaCTX-M, 27 (18.6%) blaTEM, and 26 (68.4%) blaNDM. CONCLUSION: This study found a high prevalence of drug-resistant ESBL-producing and CRE, highlighting the need for targeted antibiotic use to combat resistance.

2.
Saudi J Biol Sci ; 31(3): 103918, 2024 Mar.
Artigo em Inglês | MEDLINE | ID: mdl-38283772

RESUMO

Cancer is a highly complex and heterogeneous disease. Traditional methods of cancer classification based on histopathology have limitations in guiding personalized prognosis and therapy. Gene expression profiling provides a powerful approach to unraveling molecular intricacies and better-stratifying cancer subtypes. In this study, we performed an integrative analysis of RNA sequencing data from five cancer types - BRCA, KIRC, COAD, LUAD, and PRAD. A machine learning workflow consisting of dataset identification, normalization, feature selection, dimensionality reduction, clustering, and classification was implemented. The k-means algorithm was applied to categorize samples into distinct clusters based solely on gene expression patterns. Five unique clusters emerged from the unsupervised machine learning based analysis, significantly correlating with the known cancer types. BRCA aligned predominantly with one cluster, while COAD spanned three clusters. KIRC was represented within two main clusters. LUAD is associated strongly with a single cluster and PRAD with another cluster. This demonstrates the ability of machine learning approaches to unravel complex signatures within transcriptomic profiles that can delineate cancer subtypes. The proposed study highlights the potential of integrative analytics to derive meaningful biological insights from high-dimensional omics datasets. Molecular subtyping through machine learning clustering enhances our understanding of the intrinsic heterogeneities and pathways dysregulated in different cancers. Overall, this study exemplifies a powerful computational framework to classify gene expressions of patients having different types of cancers and guide personalized therapeutic decisions. Finally, Wide Neural Network demonstrates a significantly higher accuracy, achieving 99.834% on the validation set and an even more impressive 99.995% on the test set.

3.
Microb Pathog ; 185: 106438, 2023 Dec.
Artigo em Inglês | MEDLINE | ID: mdl-37925110

RESUMO

Tuberculosis (TB) is a chronic, life-threatening disease caused by unusual facultative intracellular bacteria, Mycobacterium tuberculosis. This bacterium has unique resistance to many antimicrobial agents and has become a major global health concern due to emerging multidrug-resistant strains. Additionally, it has developed multiple schemes to exploit host immune signaling and establish long-term survival within host tissues. Thus, understanding the pathways that govern the crosstalk between the bacterium and the immune system could provide a new avenue for therapeutic interventions. MicroRNAs (miRs) are short, noncoding, and regulator RNA molecules that control the expression of cellular genes by targeting their mRNAs post-transcriptionally. MiR-155 is one of the most crucial miR in shaping the host immune defenses against M. tuberculosis. MiR-155 is remarkably downregulated in patients with clear clinical TB symptoms in comparison with latently infected patients and/or healthy individuals, thereby implicating its role in controlling M. tuberculosis infection. However, functional probing of miR-155 suggests dual effects in regulating the host's innate defenses in response to mycobacterial infection. This review provides comprehensive knowledge and future perspectives regarding complex signaling pathways that mediated miR-155 expression during M. tuberculosis infections. Moreover, miR-155-targeting signaling orchestrates inflammatory mediators' production, apoptosis, and autophagy.


Assuntos
MicroRNAs , Mycobacterium tuberculosis , Tuberculose , Humanos , Mycobacterium tuberculosis/metabolismo , MicroRNAs/genética , MicroRNAs/metabolismo , Imunidade Inata , Autofagia/genética
4.
Saudi J Biol Sci ; 30(11): 103835, 2023 Nov.
Artigo em Inglês | MEDLINE | ID: mdl-37885612

RESUMO

Methicillin-resistant Staphylococcus aureus (MRSA) is accountable for a plethora of infections, ranging from minor cutaneous manifestations to grave metastatic conditions. The dissemination of MRSA among cancer patients poses a substantial public health hazard on a global scale. This study explores the association between MRSA and bacteriophage-encoded immune evasion cluster (IEC) genes. This investigation employed a total of 168 pathogenic MRSA collected from 38 cancer and 130 non-cancer patients. A cefoxitin disc diffusion method followed by PCR analysis was used to identify the mecA gene. In this study, we employed singleplex and multiplexed PCR techniques to detect specific IEC genes. No association (p = 0.98) was observed between the sex and age of patients and MRSA isolates. However, MRSA isolates demonstrated a notable association (p = 0.01) with pus samples in non-cancer patients and skin swabs in cancer patients. The resistance profiles of MRSA strains from cancer and non-cancer patients did not show significant differences (p > 0.05). Notably, the sea gene was found to be more prevalent in MRSA isolates from cancer patients, displaying a significant association (p = 0.03). Additionally, this study identified two novel and distinct combinations of IEC types, namely V1 (sea, chp, scn) and V2 (sea, scn). Cancer patients had higher multidrug resistance and toxin gene abundance than non-cancer patients. The identification of two novel IEC patterns underscores the urgent need to control MRSA dissemination in hospitals and monitor emerging clones.

5.
Saudi J Biol Sci ; 30(11): 103805, 2023 Nov.
Artigo em Inglês | MEDLINE | ID: mdl-37727525

RESUMO

Malaria caused by the Plasmodium falciparum strain is more severe because of this protozoan's ability to disrupt the physiology of host cells during the blood stages of development by initiating the production of the interleukin-10 (IL-10) family of cytokines. P. falciparum feeds on hemoglobin and causes host cells to adhere to the walls of blood vessels by remodeling their composition. IL-10 is produced by CD4+ T cells that inhibits antigen-presenting cells' activity to prevent inflammation. This cytokine and its family members are crucial in promoting malarial infection by inhibiting the host's protective immune response, thus initiating Plasmodium parasitemia. IL-10 is also responsible for preventing severe pathology during Plasmodium infection and initiates several signaling pathways to alter the physiology of host cells during malarial infection. This review summarizes the critical aspects of P. falciparum infection, including its role in signaling pathways for cytokine exudation, its effect on microRNA, the human immune response in malaria, and the role played by the liver hormone hepcidin. Moreover, future aspects of vaccine development and therapeutic strategies to combat P. falciparum infections are also discussed in detail.

6.
RSC Adv ; 13(40): 28139-28147, 2023 Sep 18.
Artigo em Inglês | MEDLINE | ID: mdl-37753394

RESUMO

Applying a multistep approach, novel indolin-2-ones (IND) that possess an arylidene motif have been synthesized. Eight compounds were chosen for different biological tests (antimicrobial and cytotoxicity). IND containing 2-thienyl (4h) fragment have been found to exhibit good antimicrobial activity against B. cereus. Molecules that have 3-aminophenyl (4d) or 2-pyridyl (4g) groups have shown the best antifungal activities against all tested fungi. These compounds have also been noticed as promising pharmaceuticals against MCF-7 cancer cell lines. Experimental outcomes from the investigation of the interaction of 4d with DNA implied its moderate binding to DNA (KSV = 1.35 × 104 and 3.05 × 104 M-1 for EB and Hoechst binder, respectively). However, considerably stronger binding of 4d to BSA has been evidenced (Ka = 6.1 × 106 M-1). In summary, IND that contains m-aminobenzylidene fragment (4d) exhibits a good dual biological activity making it a promising candidate for further investigation in the drug discovery sector.

7.
BMC Complement Med Ther ; 23(1): 42, 2023 Feb 08.
Artigo em Inglês | MEDLINE | ID: mdl-36755237

RESUMO

BACKGROUND: Extensively drug-resistant (XDR) Salmonella enterica serovar Typhi (S. Typhi) poses a grave threat to public health due to increased mortality and morbidity caused by typhoid fever. Honey is a promising antibacterial agent, and we aimed to determine the antibacterial activity of honey against XDR S. Typhi. METHODS: We isolated 20 clinical isolates of XDR S. Typhi from pediatric septicemic patients and determined the minimum inhibitory concentrations (MICs) of different antibiotics against the pathogens using the VITEK 2 Compact system. Antimicrobial-resistant genes carried by the isolates were identified using PCR. The antibacterial efficacy of five Pakistani honeys was examined using agar well diffusion assay, and their MICs and minimum bactericidal concentrations (MBCs) were determined with the broth microdilution method. RESULTS: All 20 isolates were confirmed as S. Typhi. The antibiogram phenotype was confirmed as XDR S. Typhi with resistance to ampicillin (≥ 32 µg/mL), ciprofloxacin (≥ 4 µg/mL), and ceftriaxone (≥ 4 µg/mL) and sensitivity to azithromycin (≤ 16 µg/mL) and carbapenems (≤ 1 µg/mL). Molecular conformation revealed the presence of blaTM-1, Sul1, qnrS, gyrA, gyrB, and blaCTX-M-15 genes in all isolates. Among the five honeys, beri honey had the highest zone of inhibition of 7-15 mm and neem honey had a zone of inhibition of 7-12 mm. The MIC and MBC of beri honey against 3/20 (15%) XDR S. Typhi isolates were 3.125 and 6.25%, respectively, while the MIC and MBC of neem were 3.125 and 6.25%, respectively, against 3/20 (15%) isolates and 6.25 and 12.5%, respectively, against 7/20 (35%) isolates. CONCLUSION: Indigenous honeys have an effective role in combating XDR S. Typhi. They are potential candidates for clinical trials as alternative therapeutic options against XDR S. Typhi isolates.


Assuntos
Antibacterianos , Mel , Antibacterianos/farmacologia , Salmonella typhi/genética , Paquistão , Farmacorresistência Bacteriana
8.
Microorganisms ; 11(1)2023 Jan 08.
Artigo em Inglês | MEDLINE | ID: mdl-36677453

RESUMO

Antibiotic-resistant bacteria causing foodborne serious illnesses can be found in contaminated food. Therefore, this study aimed to identify the pathogens, genes, and antimicrobial residues present in raw milk and meat. We collected 40 raw milk and 40 beef samples using the aseptic method from various parts of the Faisalabad metropolis, Pakistan. The samples were cultured on blood, MacConkey, and UTI chrome agar. The VITEK 2 compact system was used for microbial identification and determination of minimum inhibitory concentrations. Antimicrobial resistance genes for extended-spectrum ß-lactamases, methicillin resistance in Staphylococcus aureus, and carbapenem resistance were identified using molecular techniques. ELISA was used to determine the tetracycline residue level in each sample. The beef samples showed polymicrobial contamination with 64 bacterial isolates, with Escherichia coli (29; 45.3%) and Klebsiella pneumoniae (11; 17.1%) predominating. The milk samples showed polymicrobial contamination with 73 bacterial isolates, with E. coli (22; 30%), K. pneumoniae (12; 16.4%), and S. aureus (10; 13.6%) forming the majority. Twenty-eight (43.7%) isolates from beef harbored tet genes, nineteen (29.6%) blaCTX-M, and fourteen (21.8%) blaNDM-1, and twenty-six (35.6%) isolates from milk harbored tet genes, nineteen (26%) blaTEM and blaCTX-M, and three (4%) blaNDM-1. Twenty-two (55%) each of the beef and milk samples exceeded the maximum residue limit for tetracycline. Polymicrobial contamination by bacteria possessing blaCTX-M, blaTEM, blaNDM-1, blaOXA, mecA, and tet genes was identified in food samples. The high tetracycline residue levels pose a serious health risk to consumers.

9.
Healthcare (Basel) ; 10(12)2022 Dec 17.
Artigo em Inglês | MEDLINE | ID: mdl-36554085

RESUMO

Rubella virus (RuV) generally causes a mild infection, but it can sometimes lead to systemic abnormalities. This study aimed to conduct a bibliometric analysis of over two decades of RuV research. Medical studies published from 2000 to 2021 were analyzed to gain insights into and identify research trends and outputs in RuV. R and VOSviewer were used to conduct a bibliometric investigation to determine the globally indexed RuV research output. The Dimensions database was searched with RuV selected as the subject, and 2500 published documents from the preceding two decades were reviewed. The number of publications on RuV has increased since 2003, reaching its peak in 2020. There were 12,072 authors and 16,769 author appearances; 88 publications were single-authored and 11,984 were multi-authored. The United States was the most influential contributor to RuV research, in terms of publications and author numbers. The number of RuV-related articles has continued to increase over the past few years due to the significant rubella burden in low-income nations. This study will aid in formulating plans and policies to control and prevent RuV infections.

10.
Artigo em Inglês | MEDLINE | ID: mdl-36231710

RESUMO

Human respiratory infections caused by coronaviruses can range from mild to deadly. Although there are numerous studies on coronavirus disease 2019 (COVID-19), few have been published on its Omicron variant. In order to remedy this deficiency, this study undertook a bibliometric analysis of the publishing patterns of studies on the Omicron variant and identified hotspots. Automated transportation, environmental protection, improved healthcare, innovation in banking, and smart homes are just a few areas where machine learning has found use in tackling complicated problems. The sophisticated Scopus database was queried for papers with the term "Omicron" in the title published between January 2020 and June 2022. Microsoft Excel 365, VOSviewer, Bibliometrix, and Biblioshiny from R were used for a statistical analysis of the publications. Over the study period, 1917 relevant publications were found in the Scopus database. Viruses was the most popular in publications for Omicron variant research, with 150 papers published, while Cell was the most cited source. The bibliometric analysis determined the most productive nations, with USA leading the list with the highest number of publications (344) and the highest level of international collaboration on the Omicron variant. This study highlights scientific advances and scholarly collaboration trends and serves as a model for demonstrating global trends in Omicron variant research. It can aid policymakers and medical researchers to fully grasp the current status of research on the Omicron variant. It also provides normative data on the Omicron variant for visualization, study, and application.


Assuntos
COVID-19 , SARS-CoV-2 , Bibliometria , COVID-19/epidemiologia , Humanos , Publicações
11.
J Infect Public Health ; 15(10): 1156-1165, 2022 Oct.
Artigo em Inglês | MEDLINE | ID: mdl-36174285

RESUMO

The monkeypox virus (MPXV) is the cause of a zoonotic infection similar to smallpox. Although it is endemic to Africa, it has recently begun to circulate in other parts of the world. In July 2022, the World Health Organization declared monkeypox an international public health emergency. This review aims to provide an overview of this neglected zoonotic pathogen. MPXV circulates as two distinct clades, the Central African and West African, with case fatality rates of 10.6% and 3.6%, respectively. The risk of infection is greater for those who work with animals or infected individuals. The virus' entry into the human body provokes both natural and acquired immunity. Although natural killer cells, CD4 + T cells, and CD8 + T cells play an essential role in eradicating MPXV, there is still a gap in the understanding of the host immune response to the virus. Currently, there are no specific therapeutic guidelines for treating monkeypox; however, some antiviral drugs such as tecovirimat and cidofovir may help to abate the severity of the disease. The use of nonpharmaceutical interventions and immunization can reduce the risk of infection. Increased surveillance and identification of monkeypox cases are crucial to understand the constantly shifting epidemiology of this resurging and intimidating disease. The present review provides a detailed perspective on the emergence and circulation of MPXV in human populations, infection risks, human immune response, disease diagnosis and prevention strategies, and future implications, and highlights the importance of the research community engaging more with this disease for an effective global response.


Assuntos
Mpox , Animais , Humanos , Mpox/epidemiologia , Saúde Pública , Monkeypox virus/fisiologia , África
12.
Antibiotics (Basel) ; 11(9)2022 Aug 30.
Artigo em Inglês | MEDLINE | ID: mdl-36139948

RESUMO

The emergence of carbapenem-resistant Acinetobacter calcoaceticus-baumannii complex (CRACB) in clinical environments is a significant global concern. These critical pathogens have shown resistance to a broad spectrum of antibacterial drugs, including carbapenems, mostly due to the acquisition of various ß-lactamase genes. Clinical samples (n = 1985) were collected aseptically from multiple sources and grown on blood and MacConkey agar. Isolates and antimicrobial susceptibility were confirmed with the VITEK-2 system. The modified Hodge test confirmed the CRACB phenotype, and specific PCR primers were used for the molecular identification of blaOXA and blaNDM genes. Of the 1985 samples, 1250 (62.9%) were culture-positive and 200 (43.9%) were CRACB isolates. Of these isolates, 35.4% were recovered from pus samples and 23.5% from tracheal secretions obtained from patients in intensive care units (49.3%) and medical wards (20.2%). An antibiogram indicated that 100% of the CRACB isolates were resistant to ß-lactam antibiotics and ß-lactam inhibitors, 86.5% to ciprofloxacin, and 83.5% to amikacin, while the most effective antibiotics were tigecycline and colistin. The CRACB isolates displayed resistance to eight different AWaRe classes of antibiotics. All isolates exhibited the blaOXA-51 gene, while blaOXA-23 was present in 94.5%, blaVIM in 37%, and blaNDM in 14% of the isolates. The blaOXA-51, blaOXA-23, and blaOXA-24 genes co-existed in 13 (6.5%) isolates. CRACB isolates with co-existing blaOXA-23, blaOXA-24, blaNDM, blaOXA-51 and blaVIM genes were highly prevalent in clinical samples from Pakistan. CRACB strains were highly critical pathogens and presented resistance to virtually all antibacterial drugs, except tigecycline and colistin.

13.
Foods ; 11(18)2022 Sep 06.
Artigo em Inglês | MEDLINE | ID: mdl-36140855

RESUMO

Foodborne pathogens have acquired the ability to produce biofilms to survive in hostile environments. This study evaluated biofilm formation, antimicrobial resistance (AMR), and heavy metal tolerance of bacteria isolated from dairy and non-dairy food products. We aseptically collected and processed 200 dairy and non-dairy food specimens in peptone broth, incubated them overnight at 37 °C, and sub-cultured them on various culture media. Bacterial growth was identified with biochemical tests and API 20E and 20NE strips. The AMR of the isolates was observed against different antibacterial drug classes. Biofilm formation was detected with the crystal violet tube method. Heavy metal salts were used at concentrations of 250−1500 µg/100 mL to observe heavy metal tolerance. We isolated 180 (50.4%) bacteria from dairy and 177 (49.6%) from non-dairy food samples. The average colony-forming unit (CFU) count for dairy and non-dairy samples was 2.9 ± 0.9 log CFU/mL and 5.1 ± 0.3 log CFU/mL, respectively. Corynebacterium kutscheri (n = 74), lactobacilli (n = 73), and Staphylococcus aureus (n = 56) were the predominant Gram-positive and Shigella (n = 10) the predominant Gram-negative bacteria isolated. The correlation between biofilm formation and AMR was significant (p < 0.05) for most cephalosporins, aminoglycosides, and fluoroquinolones. Heavy metal tolerance tended to be higher in biofilm producers at different metal concentrations. The pathogens isolated from dairy and non-dairy food showed a high burden of AMR, high propensity for biofilm formation, and heavy metal tolerance, and pose an imminent threat to public health.

14.
Pharmaceuticals (Basel) ; 15(7)2022 Jul 05.
Artigo em Inglês | MEDLINE | ID: mdl-35890133

RESUMO

The 5-hydroxytryptamine receptor 6 (5-HT6) has gained attention as a target for developing therapeutics for Alzheimer's disease, schizophrenia, cognitive dysfunctions, anxiety, and depression, to list a few. In the present analysis, a larger and diverse dataset of 1278 molecules covering a broad chemical and activity space was used to identify visual and concealed structural features associated with binding affinity for 5-HT6. For this, quantitative structure-activity relationships (QSAR) and molecular docking analyses were executed. This led to the development of a statistically robust QSAR model with a balance of excellent predictivity (R2tr = 0.78, R2ex = 0.77), the identification of unreported aspects of known features, and also novel mechanistic interpretations. Molecular docking and QSAR provided similar as well as complementary results. The present analysis indicates that the partial charges on ring carbons present within four bonds from a sulfur atom, the occurrence of sp3-hybridized carbon atoms bonded with donor atoms, and a conditional occurrence of lipophilic atoms/groups from nitrogen atoms, which are prominent but unreported pharmacophores that should be considered while optimizing a molecule for 5-HT6. Thus, the present analysis led to identification of some novel unreported structural features that govern the binding affinity of a molecule. The results could be beneficial in optimizing the molecules for 5-HT6.

15.
Saudi J Biol Sci ; 29(5): 3347-3353, 2022 May.
Artigo em Inglês | MEDLINE | ID: mdl-35844363

RESUMO

This study aimed to find out the prevalence and antimicrobial resistance profile of Klebsiella pneumoniae in raw food items. A total of 261 raw food items, including vegetables, fruits, meat, and milk samples, were collected and processed for isolation of K. pneumoniae. Further antimicrobial susceptibility testing and molecular analysis was done to analyze the drug resistance encoding genes. The prevalence rate of K. pneumoniae was found to be high (38%), and the raw milk samples were predominantly contaminated (19/51), followed by fruits (12/51), meat (11/51), and vegetables (9/51). However, no significant association was observed for the isolation of K. pneumoniae and any particular specimen. Among the isolates, 43% were extended-spectrum ß-lactamase producers, 24% were AmpC, and 20% were carbapenemase producers. The highest rates of ESBLs and AmpC were observed in vegetables (cabbage, bell pepper, and spinach) and carbapenemases in raw chicken, fish, and raw meat samples. Notably, bla CTX-M was the most prevalent, followed by bla SHV and bla TEM. Six K. pneumoniae possessed bla MOX, and five possessed bla FOX genes. Numerous carbapenemases were identified with a higher proportion of bla NDM. This study indicates that raw vegetables, fruits, meat, and milk are exposed to contaminants. These findings imply a potential threat that drug-resistant K. pneumoniae pathogens could transmit to humans through raw vegetables, fruits, and meat.

16.
Artigo em Inglês | MEDLINE | ID: mdl-35646151

RESUMO

Background: Citrus aurantifolia Linn. fruit, a natural dietary item, has long been used traditionally to treat hypertension in Pakistan. The current research work aims to explore the effect on blood pressure and its mechanisms. Methods: The aqueous methanol extract of plant fruit was used to evaluate hypotensive/antihypertensive, vasorelaxation, and safety profiles. Moreover, the in vitro inhibitory effect of AMECA on phosphodiesterase was also evaluated. Results: In hypotensive studies, extracts of Citrus aurantifolia fruit exhibited a concentration-dependent reduction in SBP, DBP, MAP, and heart rate. A similar effect has been observed on anesthetized rats, but the effects exerted by the extract were not altered significantly in the presence of L-NAME, atropine, captopril, and propranolol. Moreover, in coronary arteries, the extract significantly potentiated relaxations induced by cGMP- and cAMP-dependent relaxing agonists. When exposed to PDEs, the extract concentration dependently subdued cGMP-hydrolyzing activity of different PDEs with IC50 values of 40-130 µg/mL. Conclusion: It is conceivable that extracts obtained from Citrus aurantifolia fruit produced hypotensive and antihypertensive effects in rats. The extract elicited endothelium-independent vasorelaxation, possibly by acting directly on smooth muscles of the coronary artery and by increasing cGMP and cAMP via nonselective inhibition of vascular PDEs.

17.
Metabolites ; 12(6)2022 May 26.
Artigo em Inglês | MEDLINE | ID: mdl-35736413

RESUMO

The present study was conducted with an intent to evaluate the protective effect of butanolic fraction of Delphinium brunonianum on fructose mediated metabolic abnormalities in rats. Rats in all groups except control group were fed on 10% fructose for 6 weeks; however, rats in the treated group also received butanolic fraction for the last 3 weeks, along with the fructose. Moreover, phytoconstituents present in butanolic fraction were analyzed using LC-MS. All doses of butanolic fraction profoundly reduce the fructose-induced blood pressure, sympathetic over-activity, and weight gain. Furthermore, butanolic fraction prominently reduces the glucose intolerance and hyperinsulinemia in fructose-fed rats. On treatment with butanolic fraction, oxidative enzymes and the functionality of the aorta was also restored. Phytochemical analysis revealed the presence of several active constituents including bergenin, scopolin, rutinoside, kaempferol, coumaric acid, apigenin, and gingerol. In conclusion, butanolic fraction of Delphinium brunonianum has the potential to prevent and recover the fructose-induced metabolic perturbations.

18.
Polymers (Basel) ; 14(9)2022 May 06.
Artigo em Inglês | MEDLINE | ID: mdl-35567073

RESUMO

Mimosa pudica seed mucilage (MPM) is composed of glucuronoxylan, which is a swellable, pH-responsive and non-toxic biomaterial. Herein, we aimed to extract MPM from M. pudica seeds (MP seeds) to ascertain optimization of extraction conditions to get highest yield by response surface methodology, via Box-Behnken design (RSM-BBD). MPM was extracted from MP seeds by a hot water extraction method. The effects of four different parameters on the extraction yield of MPM were evaluated: pH of the extraction medium (1-10), seed/water contact time (1-12 h), the temperature of extraction medium (30-90 °C), and seed/water ratio (1:5-1:35 w/v). The maximum yield of MPM obtained by Design-Expert software was 10.66% (10.66 g/100 g) at pH 7, seed/water contact time of 6 h, extraction temperature of 50 °C, and seed/water ratio of 1:20 w/v. The p values of ANOVA were found to be less than 0.0001, which indicated that the extraction yield of MPM was significantly affected by all the study parameters. The results revealed that pH and extraction temperature were the most significant factors affecting the yield of MPM. MPM in compressed tablet form showed pH-responsive on-off switching behavior at pH 7.4 and 1.2 in a reversible manner. MPM in compressed tablet form sustained the release of itopride for 16 h following a super case-II transport mechanism and zero-order release kinetics.

19.
Gels ; 8(5)2022 May 08.
Artigo em Inglês | MEDLINE | ID: mdl-35621589

RESUMO

The pH-sensitive polymeric matrix of basil seed gum (BSG), with two different monomers, such as acrylic acid (AA) and N, N-Methylene-bis-acrylamide (MBA), was selected to use in hydrogels preparation through a free radical copolymerization technique using potassium per sulfate (KPS) as a cross linker. BSG, AA and MBA were used in multiple ratios to investigate the polymer, monomer and initiator effects on swelling properties and release pattern of captopril. Characterization of formulated hydrogels was done by FTIR, DSC/TGA, XRD and SEM techniques to confirm the stability. The hydrogels were subjected to a variety of tests, including dynamic swelling investigations, drug loading, in vitro drug release, sol-gel analyses and rheological studies. FTIR analysis confirmed that after the polymeric reaction of BSG with the AA monomer, AA chains grafted onto the backbone of BSG. The SEM micrographs illustrated an irregular, rough, and porous form of surface. Gel content was increased by increasing the contents of polymeric gum (BSG) with monomers (AA and MBA). Acidic and basic pH effects highlighted the difference between the swelling properties with BSG and AA on increasing concentration. Kinetic modelling suggested that Korsmeyer Peppas model release pattern was followed by the drug with the non-Fickian diffusion mechanism.

20.
Molecules ; 27(8)2022 Apr 18.
Artigo em Inglês | MEDLINE | ID: mdl-35458804

RESUMO

New furan-based derivatives have been, designed, synthesized, and evaluated for their cytotoxic and tubulin polymerization inhibitory activities. DNA flow cytometric study of pyridine carbohydrazide 4 and N-phenyl triazinone 7 demonstrated G2/M phase cell cycle disruptions. Accumulation of cells in the pre-G1 phase and positive annexin V/PI staining, which may be caused by degeneration or fragmentation of the genetic components, suggested that cell death occurs via an apoptotic cascade. Furthermore, compounds 4 and 7 had a strong pro-apoptotic impact through inducing the intrinsic mitochondrial mechanism of apoptosis. This mechanistic route was verified by an ELISA experiment that indicated a considerable rise in the levels of p53 and Bax and a drop in the level of Bcl-2 when compared with the control.


Assuntos
Antineoplásicos , Antineoplásicos/farmacologia , Apoptose , Linhagem Celular Tumoral , Proliferação de Células , Ensaios de Seleção de Medicamentos Antitumorais , Furanos , Relação Estrutura-Atividade
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA