Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 4 de 4
Filtrar
Mais filtros








Base de dados
Intervalo de ano de publicação
1.
Funct Integr Genomics ; 24(2): 74, 2024 Apr 11.
Artigo em Inglês | MEDLINE | ID: mdl-38600306

RESUMO

Crop production is increasingly threatened by the escalating weather events and rising temperatures associated with global climate change. Plants have evolved adaptive mechanisms, including stress memory, to cope with abiotic stresses such as heat, drought, and salinity. Stress memory involves priming, where plants remember prior stress exposures, providing enhanced responses to subsequent stress events. Stress memory can manifest as somatic, intergenerational, or transgenerational memory, persisting for different durations. The chromatin, a central regulator of gene expression, undergoes modifications like DNA acetylation, methylation, and histone variations in response to abiotic stress. Histone modifications, such as H3K4me3 and acetylation, play crucial roles in regulating gene expression. Abiotic stresses like drought and salinity are significant challenges to crop production, leading to yield reductions. Plant responses to stress involve strategies like escape, avoidance, and tolerance, each influencing growth stages differently. Soil salinity affects plant growth by disrupting water potential, causing ion toxicity, and inhibiting nutrient uptake. Understanding plant responses to these stresses requires insights into histone-mediated modifications, chromatin remodeling, and the role of small RNAs in stress memory. Histone-mediated modifications, including acetylation and methylation, contribute to epigenetic stress memory, influencing plant adaptation to environmental stressors. Chromatin remodeling play a crucial role in abiotic stress responses, affecting the expression of stress-related genes. Small RNAs; miRNAs and siRNAs, participate in stress memory pathways by guiding DNA methylation and histone modifications. The interplay of these epigenetic mechanisms helps plants adapt to recurring stress events and enhance their resilience. In conclusion, unraveling the epigenetic mechanisms in plant responses to abiotic stresses provides valuable insights for developing resilient agricultural techniques. Understanding how plants utilize stress memory, histone modifications, chromatin remodeling, and small RNAs is crucial for designing strategies to mitigate the impact of climate change on crop production and global food security.


Assuntos
Regulação da Expressão Gênica de Plantas , Histonas , Histonas/genética , Histonas/metabolismo , Plantas/genética , Metilação de DNA , Estresse Fisiológico/genética
2.
Stress Biol ; 3(1): 55, 2023 Dec 11.
Artigo em Inglês | MEDLINE | ID: mdl-38079026

RESUMO

Drought stress is a significant environmental factor that adversely affects the growth and development of carrot (Daucus carota L.), resulting in reduced crop yields and quality. Drought stress induces a range of physiological and biochemical changes in carrots, including reduced germination, hindered cell elongation, wilting, and disrupted photosynthetic efficiency, ultimately leading to stunted growth and decreased root development. Recent research has focused on understanding the molecular mechanisms underlying carrot's response to drought stress, identifying key genes and transcription factors involved in drought tolerance. Transcriptomic and proteomic analyses have provided insights into the regulatory networks and signaling pathways involved in drought stress adaptation. Among biochemical processes, water scarcity alters carrot antioxidant levels, osmolytes, and hormones. This review provides an overview of the effects of drought stress on carrots and highlights recent advances in drought stress-related studies on this crop. Some recent advances in understanding the effects of drought stress on carrots and developing strategies for drought stress mitigation are crucial for ensuring sustainable carrot production in the face of changing climate conditions. However, understanding the mechanisms underlying the plant's response to drought stress is essential for developing strategies to improve its tolerance to water scarcity and ensure food security in regions affected by drought.

3.
Mol Biol Rep ; 50(1): 349-359, 2023 Jan.
Artigo em Inglês | MEDLINE | ID: mdl-36331749

RESUMO

BACKGROUND: Carrot is the most important vegetable in Apiaceae family, and it is consumed globally due to its high nutritional quality. Drought stress is major environmental constraint for vegetables especially carrot. Limited data is available regarding the mechanisms conferring drought tolerance in carrot. Methods and Results Eight commercial carrot cultivars were used in this study and subjected to drought stress under semi-controlled greenhouse conditions. Biochemical, antioxidant enzymatic activity and changes in transcript level of drought related genes was estimated, the gene expression analysis was done by using qRT-PCR in comparison with reference gene expression Actin (Act1). Results revealed that cultivars Coral Orange, Tendersweet and Solar Yellow were tolerant to drought stress, which was supported by their higher transcript levels of catalase gene (CAT), superoxide dismutase genes (Cu/ZN-SOD, Cu/Zn-SDC) in these cultivars. The downregulation of PDH1 gene (Proline dehydrogenase 1) was also observed that was associated with upregulation of proline accumulation in carrot plants. Moreover, results also suggested that PRT genes (Proline transporter genes) played a key role in drought tolerance in carrot cultivars. Conclusion Among the cultivars studied, Coral Orange showed overall tolerance to drought stress conditions, whereas cultivars Cosmic Purple and Eregli Black were sensitive based on their biochemical and gene expression levels. According to our knowledge, this is the first comparative study on drought tolerance in several carrot cultivars. It will provide a background for carrot breeding to understand biochemical and molecular responses of carrot plant to drought stress and mechanisms behind it.


Assuntos
Daucus carota , Daucus carota/genética , Daucus carota/metabolismo , Secas , Melhoramento Vegetal , Perfilação da Expressão Gênica , Expressão Gênica , Regulação da Expressão Gênica de Plantas/genética , Estresse Fisiológico/genética
4.
Funct Integr Genomics ; 22(4): 697-710, 2022 Aug.
Artigo em Inglês | MEDLINE | ID: mdl-35590117

RESUMO

Carrot is one of the nutritious vegetable crops sensitive to drought stress resulting in loss of quality and yield. There are a lot of studies on detailed molecular mechanisms of drought stress response of main crops; however, very little information available on vegetables, including carrots. Hence, in this study, we investigated root transcriptome profiles from the meristematic region of two contrasting purple carrot (B7262A, drought tolerant; P1129, drought sensitive) lines under varying stress levels (85% and 70%) by using RNA-Seq technique. The morpho-physiological and biochemical response of B7262A line exhibited tolerance behavior to both DS (85% and 70%). RNA-Seq analysis revealed that 15,839 genes were expressed commonly in both carrot lines. The carrot line B7262A showed regulation of 514 genes in response to 85% DS, whereas P1129 showed differential regulation of 622 genes under 70% DS. The B7262A carrot line showed higher upregulation of transcripts that suggested its resilient behavior contrary to P1129 line. Furthermore, validation of transcript gene by qRT-PCR also confirmed the RNA-Seq analysis resulting in elevated expression levels of MYB48 transcription factor, MAPK mitogen-activated protein kinase ANP1, GER geraniol 8-hydroxylase, ABA ABA-induced in somatic embryo 3, FBOX putative F-box protein, FRO ferric reduction oxidase, and PDR probable disease resistance protein. Current study provided unprecedented insights of purple carrot lines that can be potentially exploited for the screening and development of resilient carrot.


Assuntos
Daucus carota , Secas , Daucus carota/genética , Perfilação da Expressão Gênica/métodos , Regulação da Expressão Gênica de Plantas , Meristema/genética , Melhoramento Vegetal , Estresse Fisiológico/genética , Transcriptoma
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA