Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 12 de 12
Filtrar
Mais filtros








Base de dados
Intervalo de ano de publicação
1.
Front Oncol ; 13: 1280977, 2023.
Artigo em Inglês | MEDLINE | ID: mdl-38144523

RESUMO

Background: Identification of cancer metastasis-relevant molecular networks is desired to provide the basis for understanding and developing intervention strategies. Here we address the role of GIPC1 in the process of MACC1-driven metastasis. MACC1 is a prognostic indicator for patient metastasis formation and metastasis-free survival. MACC1 controls gene transcription, promotes motility, invasion and proliferation of colon cancer cells in vitro, and causes tumor growth and metastasis in mice. Methods: By using yeast-two-hybrid assay, mass spectrometry, co-immunoprecipitation and peptide array we analyzed GIPC1 protein binding partners, by using the MACC1 gene promoter and chromatin immunoprecipitation and electrophoretic mobility shift assay we probed for GIPC1 as transcription factor. We employed GIPC1/MACC1-manipulated cell lines for in vitro and in vivo analyses, and we probed the GIPC1/MACC1 impact using human primary colorectal cancer (CRC) tissue. Results: We identified MACC1 and its paralogue SH3BP4 as protein binding partners of the protein GIPC1, and we also demonstrated the binding of GIPC1 as transcription factor to the MACC1 promoter (TSS to -60 bp). GIPC1 knockdown reduced endogenous, but not CMV promoter-driven MACC1 expression, and diminished MACC1-induced cell migration and invasion. GIPC1 suppression reduced tumor growth and metastasis in mice intrasplenically transplanted with MACC1-overexpressing CRC cells. In human primary CRC specimens, GIPC1 correlates with MACC1 expression and is of prognostic value for metastasis formation and metastasis-free survival. Combination of MACC1 and GIPC1 expression improved patient survival prognosis, whereas SH3BP4 expression did not show any prognostic value. Conclusions: We identified an important, dual function of GIPC1 - as protein interaction partner and as transcription factor of MACC1 - for tumor progression and cancer metastasis.

2.
J Otol ; 16(1): 27-33, 2021 Jan.
Artigo em Inglês | MEDLINE | ID: mdl-33505447

RESUMO

INTRODUCTION: Osteoporosis and osteopenia are progressive disorders characterized by decreased bone mass, especially in postmenopausal women. These can be associated with body pain, fractures, hearing loss and balance disorders. The present study aims to evaluate audio-vestibular function in postmenopausal patients with osteopenia or osteoporosis. METHODS: The study included 48 postmenopausal women (new subjects) diagnosed with osteoporosis (n = 23) or osteopenia (n = 25) in the age range of 50-66 years, as well as 28 normal women as controls. Audiological testing included pure tone audiometry (conventional and extended high-frequency audiometry), speech audiometry, impedance audiometry and otoacoustic emissions, including both transient evoked otoacoustic emissions (TEOAEs) and distortion product otoacoustic emissions (DPOAEs). All subjects also underwent vestibular evoked myogenic potentials testing (both ocular and cervical VEMPs). RESULTS: In the present study, hearing was worse at all frequencies in the osteoporosis group in comparison with the osteopenia and control groups, with worse speech recognition and discrimination scores and OAEs. Vestibular function was affected in 95.65% of women with osteoporosis and 76% of those with osteopenia. CONCLUSION: Osteoporosis and osteopenia are risk factors for vestibular dysfunction and hearing deficits in postmenopausal women. Thus, hearing and vestibular function should be monitored by audiological and vestibular testing periodically in these individuals.

3.
Proc Natl Acad Sci U S A ; 116(6): 2328-2337, 2019 02 05.
Artigo em Inglês | MEDLINE | ID: mdl-30659145

RESUMO

Mutations in the MFN2 gene encoding Mitofusin 2 lead to the development of Charcot-Marie-Tooth type 2A (CMT2A), a dominant axonal form of peripheral neuropathy. Mitofusin 2 is localized at both the outer membrane of mitochondria and the endoplasmic reticulum and is particularly enriched at specialized contact regions known as mitochondria-associated membranes (MAM). We observed that expression of MFN2R94Q induces distal axonal degeneration in the absence of overt neuronal death. The presence of mutant protein leads to reduction in endoplasmic reticulum and mitochondria contacts in CMT2A patient-derived fibroblasts, in primary neurons and in vivo, in motoneurons of a mouse model of CMT2A. These changes are concomitant with endoplasmic reticulum stress, calcium handling defects, and changes in the geometry and axonal transport of mitochondria. Importantly, pharmacological treatments reinforcing endoplasmic reticulum-mitochondria cross-talk, or reducing endoplasmic reticulum stress, restore the mitochondria morphology and prevent axonal degeneration. These results highlight defects in MAM as a cellular mechanism contributing to CMT2A pathology mediated by mutated MFN2.


Assuntos
Doença de Charcot-Marie-Tooth/metabolismo , Retículo Endoplasmático/metabolismo , Mitocôndrias/metabolismo , Animais , Axônios/metabolismo , Transporte Biológico , Doença de Charcot-Marie-Tooth/genética , Doença de Charcot-Marie-Tooth/fisiopatologia , Modelos Animais de Doenças , Retículo Endoplasmático/ultraestrutura , Feminino , Marcha , Locomoção/genética , Masculino , Camundongos , Camundongos Transgênicos , Mitocôndrias/ultraestrutura , Neurônios Motores/metabolismo , Denervação Muscular , Fibras Musculares de Contração Lenta , Transdução de Sinais
4.
Autophagy ; 15(6): 1051-1068, 2019 06.
Artigo em Inglês | MEDLINE | ID: mdl-30669930

RESUMO

HSPB1 (heat shock protein family B [small] member 1) is a ubiquitously expressed molecular chaperone. Most mutations in HSPB1 cause axonal Charcot-Marie-Tooth neuropathy and/or distal hereditary motor neuropathy. In this study we show that mutations in HSPB1 lead to impairment of macroautophagic/autophagic flux. In HSPB1 knockout cells, we demonstrate that HSPB1 is necessary for autophagosome formation, which was rescued upon re-expression of HSPB1. Employing a label-free LC-MS/MS analysis on the various HSPB1 variants (wild type and mutants), we identified autophagy-specific interactors. We reveal that the wild-type HSPB1 protein binds to the autophagy receptor SQSTM1/p62 and that the PB1 domain of SQSTM1 is essential for this interaction. Mutations in HSPB1 lead to a decrease in the formation of SQSTM1/p62 bodies, and subsequent impairment of phagophore formation, suggesting a regulatory role for HSPB1 in autophagy via interaction with SQSTM1. Remarkably, autophagy deficits could also be confirmed in patient-derived motor neurons thereby indicating that the impairment of autophagy might be one of the pathomechanisms by which mutations in HSPB1 lead to peripheral neuropathy. Abbreviations: ACD: alpha-crystallin domain; ALS: amyotrophic lateral sclerosis; ATG14: autophagy related 14; BAG1/3: BCL2 associated athanogene 1/3; CMT: Charcot-Marie-Tooth; dHMN: distal hereditary motor neuropathy; GFP: green fluorescent protein; HSPA8: heat shock protein family A (Hsp70) member 8; HSPB1/6/8: heat shock protein family B (small) member 1/6/8; LIR: LC3-interacting region; LC3B: microtubule associated protein 1 light chain 3 beta; PB1: Phox and Bem1; SQSTM1: sequestosome 1; STUB1/CHIP: STIP1 homology and U-box containing protein 1; UBA: ubiquitin-associated; WIPI1: WD repeat domain, phosphoinositide interacting 1; WT: wild-type.


Assuntos
Autofagossomos/metabolismo , Doença de Charcot-Marie-Tooth/genética , Proteínas de Choque Térmico/genética , Chaperonas Moleculares/genética , Neurônios Motores/metabolismo , Atrofia Muscular Espinal/genética , Proteína Sequestossoma-1/metabolismo , Esclerose Lateral Amiotrófica/genética , Autofagossomos/ultraestrutura , Autofagia/genética , Cromatografia Líquida , Células HeLa , Proteínas de Choque Térmico/química , Proteínas de Choque Térmico/metabolismo , Humanos , Células-Tronco Pluripotentes Induzidas/efeitos dos fármacos , Células-Tronco Pluripotentes Induzidas/metabolismo , Chaperonas Moleculares/química , Chaperonas Moleculares/metabolismo , Neurônios Motores/patologia , Mutação , Domínios Proteicos , Proteína Sequestossoma-1/química , Proteína Sequestossoma-1/genética , Espectrometria de Massas em Tandem
5.
J Neurol Neurosurg Psychiatry ; 90(1): 58-67, 2019 01.
Artigo em Inglês | MEDLINE | ID: mdl-30018047

RESUMO

Much has been achieved in terms of understanding the complex clinical and genetic heterogeneity of Charcot-Marie-Tooth neuropathy (CMT). Since the identification of mutations in the first CMT associated gene, PMP22, the technological advancement in molecular genetics and gene technology has allowed scientists to generate diverse animal models expressing monogenetic mutations that closely resemble the CMT phenotype. Additionally, one can now culture patient-derived neurons in a dish using cellular reprogramming and differentiation techniques. Nevertheless, despite the fact that finding a disease-causing mutation offers a precise diagnosis, there is no cure for CMT at present. This review will shed light on the exciting advancement in CMT disease modelling, the breakthroughs, pitfalls, current challenges for scientists and key considerations to move the field forward towards successful therapies.


Assuntos
Doença de Charcot-Marie-Tooth/fisiopatologia , Modelos Animais de Doenças , Células-Tronco Pluripotentes Induzidas/metabolismo , Animais , Doença de Charcot-Marie-Tooth/genética , Humanos , Camundongos , Modelos Biológicos , Mutação , Proteínas da Mielina/genética , Proteínas da Mielina/metabolismo
6.
J Neurol Neurosurg Psychiatry ; 89(8): 870-878, 2018 08.
Artigo em Inglês | MEDLINE | ID: mdl-29449460

RESUMO

BACKGROUND: Charcot-Marie-Tooth type 2 (CMT2) neuropathy is characterised by a vast clinical and genetic heterogeneity complicating its diagnosis and therapeutic intervention. Identification of molecular signatures that are common to multiple CMT2 subtypes can aid in developing therapeutic strategies and measuring disease outcomes. METHODS: A proteomics-based approach was performed on lymphoblasts from CMT2 patients genetically diagnosed with different gene mutations to identify differentially regulated proteins. The candidate proteins were validated through real-time quantitative PCR and western blotting on lymphoblast samples of patients and controls, motor neurons differentiated from patient-derived induced pluripotent stem cells (iPSCs) and sciatic nerves of CMT2 mouse models. RESULTS: Proteomic profiling of patient lymphoblasts resulted in the identification of profilin 2 (PFN2) and guanidinoacetate methyltransferase (GAMT) as commonly downregulated proteins in different genotypes compared with healthy controls. This decrease was also observed at the transcriptional level on screening 43 CMT2 patients and 22 controls, respectively. A progressive decrease in PFN2 expression with age was observed in patients, while in healthy controls its expression increased with age. Reduced PFN2 expression was also observed in motor neurons differentiated from CMT2 patient-derived iPSCs and sciatic nerves of CMT2 mice when compared with controls. However, no change in GAMT levels was observed in motor neurons and CMT2 mouse-derived sciatic nerves. CONCLUSIONS: We unveil PFN2 and GAMT as molecular determinants of CMT2 with possible indications of the role of PFN2 in the pathogenesis and disease progression. This is the first study describing biomarkers that can boost the development of therapeutic strategies targeting a wider spectrum of CMT2 patients.


Assuntos
Doença de Charcot-Marie-Tooth/genética , Genótipo , Guanidinoacetato N-Metiltransferase/genética , Mutação , Profilinas/genética , Adulto , Idoso , Axônios/patologia , Doença de Charcot-Marie-Tooth/patologia , Feminino , Humanos , Masculino , Pessoa de Meia-Idade , Linhagem , Fenótipo , Proteômica , Adulto Jovem
7.
Acta Neuropathol ; 135(1): 131-148, 2018 01.
Artigo em Inglês | MEDLINE | ID: mdl-28780615

RESUMO

Mutations in the small heat shock protein B8 gene (HSPB8/HSP22) have been associated with distal hereditary motor neuropathy, Charcot-Marie-Tooth disease, and recently distal myopathy. It is so far not clear how mutant HSPB8 induces the neuronal and muscular phenotypes and if a common pathogenesis lies behind these diseases. Growing evidence points towards a role of HSPB8 in chaperone-associated autophagy, which has been shown to be a determinant for the clearance of poly-glutamine aggregates in neurodegenerative diseases but also for the maintenance of skeletal muscle myofibrils. To test this hypothesis and better dissect the pathomechanism of mutant HSPB8, we generated a new transgenic mouse model leading to the expression of the mutant protein (knock-in lines) or the loss-of-function (functional knock-out lines) of the endogenous protein Hspb8. While the homozygous knock-in mice developed motor deficits associated with degeneration of peripheral nerves and severe muscle atrophy corroborating patient data, homozygous knock-out mice had locomotor performances equivalent to those of wild-type animals. The distal skeletal muscles of the post-symptomatic homozygous knock-in displayed Z-disk disorganisation, granulofilamentous material accumulation along with Hspb8, αB-crystallin (HSPB5/CRYAB), and desmin aggregates. The presence of the aggregates correlated with reduced markers of effective autophagy. The sciatic nerve of the homozygous knock-in mice was characterized by low autophagy potential in pre-symptomatic and Hspb8 aggregates in post-symptomatic animals. On the other hand, the sciatic nerve of the homozygous knock-out mice presented a normal morphology and their distal muscle displayed accumulation of abnormal mitochondria but intact myofiber and Z-line organisation. Our data, therefore, suggest that toxic gain-of-function of mutant Hspb8 aggregates is a major contributor to the peripheral neuropathy and the myopathy. In addition, mutant Hspb8 induces impairments in autophagy that may aggravate the phenotype.


Assuntos
Miopatias Distais/metabolismo , Mutação com Ganho de Função , Proteínas de Choque Térmico HSP20/genética , Proteínas de Choque Térmico HSP20/metabolismo , Proteínas Musculares/genética , Proteínas Musculares/metabolismo , Miopatias Congênitas Estruturais/metabolismo , Doenças do Sistema Nervoso Periférico/metabolismo , Animais , Atrofia/metabolismo , Atrofia/patologia , Autofagia/fisiologia , Modelos Animais de Doenças , Miopatias Distais/patologia , Feminino , Proteínas de Choque Térmico , Camundongos Transgênicos , Mitocôndrias/metabolismo , Mitocôndrias/patologia , Chaperonas Moleculares , Músculo Esquelético/metabolismo , Músculo Esquelético/patologia , Miopatias Congênitas Estruturais/patologia , Nervo Isquiático/metabolismo , Nervo Isquiático/patologia
8.
PLoS Biol ; 15(6): e2000784, 2017 Jun.
Artigo em Inglês | MEDLINE | ID: mdl-28570591

RESUMO

MACC1 (Metastasis Associated in Colon Cancer 1) is a key driver and prognostic biomarker for cancer progression and metastasis in a large variety of solid tumor types, particularly colorectal cancer (CRC). However, no MACC1 inhibitors have been identified yet. Therefore, we aimed to target MACC1 expression using a luciferase reporter-based high-throughput screening with the ChemBioNet library of more than 30,000 compounds. The small molecules lovastatin and rottlerin emerged as the most potent MACC1 transcriptional inhibitors. They remarkably inhibited MACC1 promoter activity and expression, resulting in reduced cell motility. Lovastatin impaired the binding of the transcription factors c-Jun and Sp1 to the MACC1 promoter, thereby inhibiting MACC1 transcription. Most importantly, in CRC-xenografted mice, lovastatin and rottlerin restricted MACC1 expression and liver metastasis. This is-to the best of our knowledge-the first identification of inhibitors restricting cancer progression and metastasis via the novel target MACC1. This drug repositioning might be of therapeutic value for CRC patients.


Assuntos
Acetofenonas/uso terapêutico , Antineoplásicos/uso terapêutico , Benzopiranos/uso terapêutico , Neoplasias Colorretais/tratamento farmacológico , Regulação Neoplásica da Expressão Gênica/efeitos dos fármacos , Inibidores de Hidroximetilglutaril-CoA Redutases/uso terapêutico , Fatores de Transcrição/antagonistas & inibidores , Desacopladores/uso terapêutico , Acetofenonas/efeitos adversos , Acetofenonas/química , Acetofenonas/farmacologia , Animais , Antineoplásicos/efeitos adversos , Antineoplásicos/química , Antineoplásicos/farmacologia , Benzopiranos/efeitos adversos , Benzopiranos/química , Benzopiranos/farmacologia , Sítios de Ligação , Linhagem Celular Tumoral , Proliferação de Células/efeitos dos fármacos , Neoplasias Colorretais/metabolismo , Neoplasias Colorretais/patologia , Feminino , Genes Reporter/efeitos dos fármacos , Humanos , Inibidores de Hidroximetilglutaril-CoA Redutases/química , Inibidores de Hidroximetilglutaril-CoA Redutases/farmacologia , Neoplasias Hepáticas Experimentais/prevenção & controle , Neoplasias Hepáticas Experimentais/secundário , Camundongos SCID , Simulação de Acoplamento Molecular , Proteínas de Neoplasias/antagonistas & inibidores , Proteínas de Neoplasias/química , Proteínas de Neoplasias/genética , Proteínas de Neoplasias/metabolismo , Regiões Promotoras Genéticas/efeitos dos fármacos , Distribuição Aleatória , Proteínas Recombinantes/química , Proteínas Recombinantes/metabolismo , Bibliotecas de Moléculas Pequenas , Transativadores , Fatores de Transcrição/química , Fatores de Transcrição/genética , Fatores de Transcrição/metabolismo , Carga Tumoral/efeitos dos fármacos , Desacopladores/efeitos adversos , Desacopladores/química , Desacopladores/farmacologia , Ensaios Antitumorais Modelo de Xenoenxerto
9.
Clin Cancer Res ; 22(11): 2812-24, 2016 06 01.
Artigo em Inglês | MEDLINE | ID: mdl-26758557

RESUMO

PURPOSE: We have previously identified the gene MACC1 as a strong prognostic biomarker for colorectal cancer metastasis and patient survival. Here, we report for the first time the generation of transgenic mouse models for MACC1. EXPERIMENTAL DESIGN: We generated mice with transgenic overexpression of MACC1 in the intestine driven by the villin promoter (vil-MACC1) and crossed them with Apc(Min) mice (vil-MACC1/Apc(Min)). RESULTS: vil-MACC1/Apc(Min) mice significantly increased the total number of tumors (P = 0.0056). This was particularly apparent in large tumors (≥3-mm diameter; P = 0.0024). A detailed histopathologic analysis of these lesions demonstrated that the tumors from the vil-MACC1/Apc(Min) mice had a more invasive phenotype and, consequently, showed a significantly reduced survival time than Apc(Min) mice (P = 0.03). Molecular analysis revealed an increased Wnt and pluripotency signaling in the tumors of vil-MACC1/Apc(Min) mice. Specifically, we observed a prominent upregulation of the pluripotency markers Oct4 and Nanog in these tumors compared with Apc(Min) controls. Finally, we could also validate that Oct4 and Nanog are regulated by MACC1 in vitro and strongly correlate with MACC1 levels in a cohort of 60 tumors of colorectal cancer patients (r = 0.7005 and r = 0.6808, respectively; P > 0.0001 and P > 0.0002, respectively). CONCLUSIONS: We provide proof of principle that MACC1-induced tumor progression in colorectal cancer acts, at least in part, via the newly discovered MACC1/Nanog/Oct4 axis. These findings might have important implications for the design of novel therapeutic intervention strategies to restrict tumor progression. Clin Cancer Res; 22(11); 2812-24. ©2016 AACR.


Assuntos
Adenoma/metabolismo , Neoplasias Colorretais/metabolismo , Proteína Homeobox Nanog/metabolismo , Fator 3 de Transcrição de Octâmero/metabolismo , Fatores de Transcrição/fisiologia , Adenoma/patologia , Animais , Linhagem Celular Tumoral , Neoplasias Colorretais/patologia , Progressão da Doença , Feminino , Expressão Gênica , Humanos , Masculino , Camundongos Endogâmicos C57BL , Camundongos Transgênicos , Proteína Homeobox Nanog/genética , Células-Tronco Neoplásicas/metabolismo , Fator 3 de Transcrição de Octâmero/genética , Células-Tronco Pluripotentes/metabolismo , Transativadores , Via de Sinalização Wnt
10.
Mol Oncol ; 7(5): 929-43, 2013 Oct.
Artigo em Inglês | MEDLINE | ID: mdl-23800415

RESUMO

MACC1, Metastasis associated in colon cancer 1, is a newly identified prognostic biomarker for colorectal cancer metastasis and patient survival, when determined in the primary tumor or patient blood. MACC1 induces cell motility and proliferation in cell culture and metastasis in mouse models. MACC1 acts as a transcriptional regulator of the receptor tyrosine kinase gene Met via binding to its promoter. However, no information about the promoter of the MACC1 gene and its transcriptional regulation has been reported so far. Here we report the identification of the MACC1 promoter using a promoter luciferase construct that directs transcription of MACC1. To gain insights into the essential domains within this promoter region, we constructed 5' truncated deletion constructs. Our results show that the region from -426 to -18 constitutes the core promoter and harbors functional motifs for the binding of AP-1, Sp1, and C/EBP transcription factors as validated by site directed mutagenesis study. Using electrophoretic mobility shift assay and chromatin immunoprecipitation assay, we demonstrated the physical interaction of these transcription factors to a minimal essential MACC1 core promoter sequence. Knock down of these transcription factors using RNAi strategy reduced MACC1 expression (P < 0.001), and resulted in decrease of cell migration (P < 0.01) which could be specifically rescued by ectopic overexpression of MACC1. In human colorectal tumors, expression levels of c-Jun and Sp1 correlated significantly to MACC1 (P = 0.0007 and P = 0.02, respectively). Importantly, levels of c-Jun and Sp1 also showed significant correlation to development of metachronous metastases (P = 0.01 and P = 0.001, respectively). This is the first study identifying the MACC1 promoter and its transcriptional regulation by AP-1 and Sp1. Knowledge of the transcriptional regulation of the MACC1 gene will implicate in enhanced understanding of its role in cancer progression and metastasis.


Assuntos
Neoplasias Colorretais/genética , Regiões Promotoras Genéticas/genética , Fatores de Transcrição/genética , Western Blotting , Linhagem Celular Tumoral , Movimento Celular/genética , Movimento Celular/fisiologia , Imunoprecipitação da Cromatina , Regulação Neoplásica da Expressão Gênica , Humanos , Proteínas Proto-Oncogênicas c-jun/genética , Proteínas Proto-Oncogênicas c-jun/metabolismo , Fator de Transcrição Sp1/genética , Fator de Transcrição Sp1/metabolismo , Transativadores , Fator de Transcrição AP-1/genética , Fator de Transcrição AP-1/metabolismo
11.
Eur J Med Chem ; 63: 474-83, 2013 May.
Artigo em Inglês | MEDLINE | ID: mdl-23524113

RESUMO

Marine organisms provide several biologically active compounds that include alkaloids with high cytotoxic activity but only a few of them have so far reached clinical stage, due partly to their limited supply and complex structural features. In an attempt to develop novel anticancer compounds, we have now synthesized diaminoindoloylthiazoles (4a-c; DIT1-3) and diaminocinnamoylthiazoles (5a,b; DCT1-2) as analogs based on a topsentin scaffold and investigated the cytotoxic and apoptotic activities of these compounds in HeLa cells. The results suggest that diaminoindoloylthiazoles (DIT1-3) inhibit cell growth and among these, DIT3 is the most cytotoxic against HeLa cells (IC50 1 µM). The diaminocinnamoylthiazoles DCT1 and DCT2, which can be viewed as curcumin-diaminothiazole hybrids, also inhibited cell growth but at relatively higher concentrations with IC50 values of 60 and 30 µM, respectively. These compounds induced apoptosis through the intrinsic pathway by reducing the mitochondrial membrane potential and activating caspases, 9 and 3, but not caspase 8. Among the marine alkaloid analogs tested in this study, DIT1-3 are very effective in inducing apoptosis of HeLa cells followed by DCT2 and DCT1. The treated cells were arrested in G2/M phase followed by accumulation of the cells in the Sub G0 phase. The curcumin-diaminothiazole hybrid DCT1 had the maximum effect in downregulating TNF-induced NF-κB activation among the compounds tested in this study. Thus, we demonstrate that diaminoindoloylthiazoles and diaminocinnamoylthiazoles induce apoptosis, regulate cell cycle and NF-κB signaling and thus show promising anticancer effects that warrant further investigation.


Assuntos
Alcaloides/síntese química , Apoptose/fisiologia , Imidazóis/síntese química , Indóis/síntese química , Tiazóis/síntese química , Alcaloides/química , Alcaloides/farmacologia , Animais , Apoptose/efeitos dos fármacos , Caspase 3/metabolismo , Caspase 9/metabolismo , Proliferação de Células/efeitos dos fármacos , Cinamatos/síntese química , Cinamatos/química , Cinamatos/farmacologia , Relação Dose-Resposta a Droga , Ativação Enzimática/efeitos dos fármacos , Citometria de Fluxo , Pontos de Checagem da Fase G2 do Ciclo Celular/efeitos dos fármacos , Células HeLa , Humanos , Imidazóis/química , Imidazóis/farmacologia , Indóis/química , Indóis/farmacologia , Concentração Inibidora 50 , Potencial da Membrana Mitocondrial/efeitos dos fármacos , Modelos Químicos , Estrutura Molecular , NF-kappa B/metabolismo , Poríferos/química , Água do Mar/parasitologia , Transdução de Sinais/efeitos dos fármacos , Tiazóis/química , Tiazóis/farmacologia , Fator de Necrose Tumoral alfa/farmacologia
12.
Curr Pharm Des ; 19(5): 841-63, 2013.
Artigo em Inglês | MEDLINE | ID: mdl-22973955

RESUMO

Colorectal cancer is one of the most common cancers worldwide and one of the leading causes of cancer-related death in the Western world. Tumor progression towards metastasis affects a large number of patients with colorectal cancer and seriously affects their clinical outcome. Therefore, considerable effort has been made towards the development of therapeutic strategies that can decrease or prevent colorectal cancer metastasis. Standard treatment of metastatic colorectal cancer with chemotherapy has been improved in the last 10 years by the addition of new targeted agents. The currently used antibodies bevacizumab, cetuximab and panitumumab target the VEGF and EGFR signaling pathways, which are crucial for tumor progression and metastasis. These antibodies have shown relevant efficacy in both first- and second-line treatment of metastatic colorectal cancer. Additionally, other signaling pathways, including the Wnt and HGF/Met pathways, have a well-established role in colorectal cancer progression and metastasis and constitute, therefore, promising targets for new therapeutic approaches. Several new drugs targeting these pathways, including different antibodies and small-molecule tyrosine kinase inhibitors, are currently being developed and tested in clinical trials. In this review, we summarize the new developments in this field, focusing on the inhibitors that show more promising results for use in colorectal cancer patients.


Assuntos
Antineoplásicos/farmacologia , Neoplasias Colorretais/tratamento farmacológico , Terapia de Alvo Molecular , Animais , Neoplasias Colorretais/patologia , Progressão da Doença , Desenho de Fármacos , Humanos , Metástase Neoplásica/prevenção & controle , Transdução de Sinais/efeitos dos fármacos
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA