Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 2 de 2
Filtrar
Mais filtros








Base de dados
Intervalo de ano de publicação
1.
Mol Cells ; 42(1): 56-66, 2019 Jan 31.
Artigo em Inglês | MEDLINE | ID: mdl-30622225

RESUMO

Histidine triad nucleotide-binding protein (HINT) is a member of the histidine triad (HIT) superfamily, which has hydrolase activity owing to a histidine triad motif. The HIT superfamily can be divided to five classes with functions in galactose metabolism, DNA repair, and tumor suppression. HINTs are highly conserved from archaea to humans and function as tumor suppressors, translation regulators, and neuropathy inhibitors. Although the structures of HINT proteins from various species have been reported, limited structural information is available for fungal species. Here, to elucidate the structural features and functional diversity of HINTs, we determined the crystal structure of HINT from the pathogenic fungus Candida albicans (CaHINT) in complex with zinc ions at a resolution of 2.5 Å. Based on structural comparisons, the monomer of CaHINT overlaid best with HINT protein from the protozoal species Leishmania major. Additionally, structural comparisons with human HINT revealed an additional helix at the C-terminus of CaHINT. Interestingly, the extended C-terminal helix interacted with the N-terminal loop (α1-ß1) and with the α3 helix, which appeared to stabilize the dimerization of CaHINT. In the C-terminal region, structural and sequence comparisons showed strong relationships among 19 diverse species from archea to humans, suggesting early separation in the course of evolution. Further studies are required to address the functional significance of variations in the C-terminal region. This structural analysis of CaHINT provided important insights into the molecular aspects of evolution within the HIT superfamily.


Assuntos
Candida albicans/metabolismo , Proteínas Fúngicas/química , Hidrolases/química , Sequência de Aminoácidos , Domínio Catalítico , Cristalografia por Raios X , Humanos , Filogenia , Homologia Estrutural de Proteína
2.
Biochim Biophys Acta Gene Regul Mech ; 1860(7): 761-772, 2017 Jul.
Artigo em Inglês | MEDLINE | ID: mdl-28487214

RESUMO

Post-transcriptional gene regulation is an important step in eukaryotic gene expression. The last step to govern production of nascent peptides is during the process of mRNA translation. mRNA translation is controlled by many translation initiation factors that are susceptible to post-translational modifications. Here we report that one of the translation initiation factors, eIF4E, is phosphorylated by Mammalian Ste20-like kinase (MST1). Upon phosphorylation, eIF4E weakly interacts with the 5' CAP to inhibit mRNA translation. Simultaneously, active polyribosome is more associated with long noncoding RNAs (lncRNAs). Moreover, the linc00689-derived micropeptide, STORM (Stress- and TNF-α-activated ORF Micropeptide), is triggered by TNF-α-induced and MST1-mediated eIF4E phosphorylation, which exhibits molecular mimicry of SRP19 and, thus, competes for 7SL RNA. Our findings have uncovered a novel function of MST1 in mRNA and lncRNA translation by direct phosphorylation of eIF4E. This novel signaling pathway will provide new platforms for regulation of mRNA translation via post-translational protein modification.


Assuntos
Fator de Iniciação 4E em Eucariotos/metabolismo , Fator de Crescimento de Hepatócito/metabolismo , Fosforilação/fisiologia , Biossíntese de Proteínas/fisiologia , Proteínas Proto-Oncogênicas/metabolismo , RNA Longo não Codificante/metabolismo , RNA Mensageiro/metabolismo , Sequência de Aminoácidos , Animais , Linhagem Celular , Linhagem Celular Tumoral , Regulação da Expressão Gênica/fisiologia , Células HeLa , Humanos , Camundongos , Polirribossomos/metabolismo , Processamento de Proteína Pós-Traducional/fisiologia , Capuzes de RNA/metabolismo , Transdução de Sinais/fisiologia , Fator de Necrose Tumoral alfa/metabolismo
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA