Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 2 de 2
Filtrar
Mais filtros








Base de dados
Intervalo de ano de publicação
1.
Nanotechnology ; 31(22): 225504, 2020 May 29.
Artigo em Inglês | MEDLINE | ID: mdl-32069439

RESUMO

In the present study, phase-dependent gas sensitivities of MoS2 chemical sensors were examined. While 1T-phase MoS2 (1T-MoS2) has shown better chemical sensitivity than has 2H-phase MoS2 (2H-MoS2), the instability of the 1T phase has been hindering applications of 1T-MoS2 as chemical sensors. Here, the chemical sensitivity of MoS2 locked in its 1T phase by using a ZnO phase lock was investigated. To develop MoS2 chemical sensors locked in the 1T phase, we synthesized a multi-dimensional nanomaterial by growing ZnO nanorods onto MoS2 nanosheets (ZnO@1T-MoS2). Raman spectroscopy and x-ray photoelectron spectroscopy analyses of such phase-locked 1T-MoS2 subjected to flash light irradiation 100 times confirmed its robustness. ZnO nanomaterials hybridized on MoS2 nanosheets not only froze the MoS2 at its 1T phase, but also increased the active surface area for chemical sensing. The resulting hybridized material showed better response, namely better sensitivity, to NO2 gas exposure at room temperature than did 1T-MoS2 and 2H-MoS2. This result indicated that increased surface area and heterojunction formation between MoS2 and ZnO constitute a more promising route for improving sensitivity than using the 1T phase itself.

2.
Small ; 14(39): e1801529, 2018 Sep.
Artigo em Inglês | MEDLINE | ID: mdl-30175531

RESUMO

Controlled nucleation and growth of metal clusters in metal deposition processes is a long-standing issue for thin-film-based electronic devices. When metal atoms are deposited on solid surfaces, unintended defects sites always lead to a heterogeneous nucleation, resulting in a spatially nonuniform nucleation with irregular growth rates for individual nuclei, resulting in a rough film that requires a thicker film to be deposited to reach the percolation threshold. In the present study, it is shown that substrate-supported graphene promotes the lateral 2D growth of metal atoms on the graphene. Transmission electron microscopy reveals that 2D metallic single crystals are grown epitaxially on supported graphene surfaces while a pristine graphene layer hardly yields any metal nucleation. A surface energy barrier calculation based on density functional theory predicts a suppression of diffusion of metal atoms on electronically perturbed graphene (supported graphene). 2D single Au crystals grown on supported graphene surfaces exhibit unusual near-infrared plasmonic resonance, and the unique 2D growth of metal crystals and self-healing nature of graphene lead to the formation of ultrathin, semitransparent, and biodegradable metallic thin films that could be utilized in various biomedical applications.

SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA