Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 11 de 11
Filtrar
Mais filtros








Base de dados
Intervalo de ano de publicação
1.
J Med Food ; 27(4): 330-338, 2024 Apr.
Artigo em Inglês | MEDLINE | ID: mdl-38387002

RESUMO

Gastric cancer is the fifth most common cancer globally and the third leading cause of cancer-related mortality. Existing treatment strategies for gastric cancer often present numerous side effects. Consequently, recent studies have shifted toward devising new treatments grounded in safer natural substances. α-Pinene, a natural terpene found in the essential oils of various plants, such as Lavender angustifolia and Satureja myrtifolia, displays antioxidant, antibiotic, and anticancer properties. Yet, its impact on gastric cancer remains unexplored. This research assessed the effects of α-pinene in vitro using a human gastric adenocarcinoma cell-line (AGS) human gastric cancer cells and in vivo via a xenograft mouse model. The survival rate of AGS cells treated with α-pinene was notably lower than that of the control group, as revealed by the 3-(4,5-dimethylthiazol-2-yl)-2,5 diphenyltetrazolium bromide assay. This decline in cell viability was linked to apoptosis, as verified by 4',6-diamidino-2-phenylindole and annexin V/propidium iodide staining. The α-pinene-treated group exhibited elevated cleaved-poly (ADP-ribose) polymerase and B cell lymphoma 2 (Bcl-2)-associated X (Bax) levels and reduced Bcl-2 levels compared with the control levels. Moreover, α-pinene triggered the activation of extracellular signal-regulated kinase, c-Jun N-terminal kinase, and p38 within the mitogen-activated protein kinase (MAPK) pathway. In the xenograft mouse model, α-pinene induced apoptosis through the MAPK pathway, devoid of toxicity. These findings position α-pinene as a promising natural therapeutic for gastric cancer.


Assuntos
Monoterpenos Bicíclicos , Neoplasias Gástricas , Humanos , Animais , Camundongos , Neoplasias Gástricas/tratamento farmacológico , Neoplasias Gástricas/metabolismo , Neoplasias Gástricas/patologia , Linhagem Celular Tumoral , Apoptose , MAP Quinases Reguladas por Sinal Extracelular , Proteínas Proto-Oncogênicas c-bcl-2/metabolismo , Proliferação de Células
2.
Biomed Pharmacother ; 172: 116216, 2024 Mar.
Artigo em Inglês | MEDLINE | ID: mdl-38295755

RESUMO

Platycodin D (PD) is the main component of triterpene saponins found in Platycodi radix. In this study, we observed a decrease in cell viability, an increase in apoptotic bodies, and an increase in the rate of apoptosis. Also, we observed an increase in cleaved PARP and Bax, a decrease in Bcl-2, and p-ERK, and an increase in p-p38 and p-JNK. Furthermore, a change in cell viability and the expression of p-p38, Bax, and Bcl-2 using the p38 inhibitor revealed a decrease in p-p38 and Bax and an increase in Bcl-2 in the inhibitor treatment group. In addition, we observed an increase in vacuole formation through morphological changes and an increase in acidic vesicular organelles (AVOs). We also observed an increase in the expression of beclin 1, LC 3-I, and -II. There was no significant decrease in cell viability in the group treated with 3-MA, but a decrease in cell viability was noted in the group treated with HCQ. HCQ treatment resulted in an increase in Bax and a decrease in Bcl-2. These findings reveal that in HT-29 colon cancer cells, PD induces apoptosis through the MAPK pathway, thereby exerting anticancer effects. Moreover, autophagy caused by PD inhibits apoptosis by protecting the cells.


Assuntos
Neoplasias do Colo , Saponinas , Triterpenos , Humanos , Proteína X Associada a bcl-2 , Saponinas/farmacologia , Triterpenos/farmacologia , Apoptose , Autofagia , Neoplasias do Colo/tratamento farmacológico , Proteínas Proto-Oncogênicas c-bcl-2
3.
Toxicol Res ; 40(1): 45-55, 2024 Jan.
Artigo em Inglês | MEDLINE | ID: mdl-38223666

RESUMO

This study sought to determine the anticancer effect of kaempferol, a glycone-type flavonoid glycoside with various pharmacological benefits, on human oral cancer MC-3 cells. In vitro studies comprised a 3-(4,5-dimethylthiazol-2-yl)-2,5-diphenyltetrazolium bromide assay, annexin V and propidium iodide staining, western blotting analysis, and acridine orange staining, while the in vivo studies entailed a xenograft model, hematoxylin and eosin staining, and TdT-mediated dUTP-biotin nick end labelling. In vitro, kaempferol reduced the rate of survival of MC-3 cells, mediated intrinsic apoptosis, increased the number of acidic vesicular organelles, and altered the expression of autophagy-related proteins. Further, treatment with the autophagy inhibitors revealed that the induced autophagy had a cytoprotective effect on apoptosis in kaempferol-treated MC-3 cells. Kaempferol also decreased the expression of phosphorylated extracellular signal-regulated kinase and increased that of phosphorylated c-Jun N-terminal kinase (p-JNK) and phosphorylated p38 kinase in MC-3 cells, suggesting the occurrence of mitogen-activated protein kinase-mediated apoptosis and JNK-mediated autophagy. In vivo, kaempferol reduced tumor growth inducing apoptosis and autophagy. These results showed that kaempferol has the potential use as an adjunctive agent in treating oral cancer.

4.
Anticancer Res ; 43(7): 3047-3056, 2023 Jul.
Artigo em Inglês | MEDLINE | ID: mdl-37351981

RESUMO

BACKGROUND/AIM: The toxic side effects of therapies against breast cancer can affect the quality of life of patients, necessitating the use of naturally-derived therapeutics. Here, we investigated the effects of Dendropanax morbiferus H. Lév. leaf (DPL) extract on breast cancer cells in vitro and in vivo to assess its anticancer potential. MATERIALS AND METHODS: MDA-MB-231 breast cancer cells were treated with DPL, and the in vitro effect of DPL on the cells was evaluated through an MTT assay, DAPI staining, annexin V/propidium iodide double staining, and western blotting. The in vivo effects of DPL were measured through the MDA-MB-231 tumor xenograft mouse model. A TUNEL assay and immunohistochemistry were used to determine the extent of apoptosis and p-p38 expression in tumor tissues, respectively. RESULTS: DPL treatment significantly suppressed cell viability in a concentration-dependent manner. Furthermore, DPL treatment resulted in increased apoptotic body formation, apoptosis rate, cleaved poly (ADP-ribose) polymerase and B-cell lymphoma 2 (Bcl-2)-associated X protein levels, phosphorylation of mitogen-activated protein kinase (MAPK) pathway proteins, and decreased Bcl-2 levels. In addition, the antitumor effect in vivo was confirmed through the xenograft model, where decreased tumor volume and weight following DPL administration were observed. Further, apoptosis and increased p-p38 levels in tumor tissues were observed, and no pathological abnormalities were found in the liver or kidney. CONCLUSION: DPL inhibits proliferation through MAPK-mediated apoptosis in breast cancer cells and tumors, suggesting the potential of DPL as a natural therapeutic agent for breast cancer.


Assuntos
Neoplasias da Mama , Proteínas Quinases Ativadas por Mitógeno , Humanos , Animais , Camundongos , Feminino , Qualidade de Vida , Proliferação de Células , Neoplasias da Mama/patologia , Apoptose , Extratos Vegetais/farmacologia , Extratos Vegetais/uso terapêutico , Proteínas Proto-Oncogênicas c-bcl-2 , Linhagem Celular Tumoral
5.
Int J Mol Sci ; 23(24)2022 Dec 12.
Artigo em Inglês | MEDLINE | ID: mdl-36555388

RESUMO

Chrysin is a flavonoid found abundantly in substances, such as honey and phytochemicals, and is known to exhibit anticancer effects against various cancer cells. Nevertheless, the anticancer effect of chrysin against oral cancer has not yet been verified. Furthermore, the mechanism underlying autophagy is yet to be clearly elucidated. Thus, this study investigated chrysin-mediated apoptosis and autophagy in human mucoepidermoid carcinoma (MC-3) cells. The change in MC-3 cell viability was examined using a 3-(4,5-dimethylthiazolyl-2)-2, 5-diphenyltetrazolium bromide cell viability assay, as well as 40,6-diamidino-2-phenylindole, annexin V, and propidium iodide staining. Western blotting was used to analyze the proteins related to apoptosis and the mitogen-activated protein kinase (MAPK) pathway. In addition, the presence or absence of autophagy and changes in the expression of related proteins were investigated using acridine orange staining and Western blot. The results suggested that chrysin induced apoptosis and autophagy in MC-3 oral cancer cells via the MAPK/extracellular signal-regulated kinase pathway. Moreover, the induced autophagy exerted a cytoprotective effect against apoptosis. Thus, the further reduced cell viability due to autophagy as well as apoptosis induction highlight therapeutic potential of chrysin for oral cancer.


Assuntos
Apoptose , Neoplasias Bucais , Humanos , Serina-Treonina Quinases TOR/metabolismo , Flavonoides/farmacologia , MAP Quinases Reguladas por Sinal Extracelular/metabolismo , Autofagia , Linhagem Celular Tumoral , Neoplasias Bucais/tratamento farmacológico
6.
Biomedicines ; 10(7)2022 Jun 21.
Artigo em Inglês | MEDLINE | ID: mdl-35884773

RESUMO

Chrysin is known to exert anti-inflammatory, antioxidant, and anticancer effects. The aim of this study was to investigate the anticancer effects of chrysin in the human melanoma cells A375SM and A375P. The results obtained demonstrated successful inhibition of the viability of these cells by inducing apoptosis and autophagy. This was confirmed by the level of apoptosis-related proteins: Bax and cleaved poly (ADP-ribose) polymerase both increased, and Bcl-2 decreased. Moreover, levels of LC3 and Beclin 1, both autophagy-related proteins, increased in chrysin-treated cells. Autophagic vacuoles and acidic vesicular organelles were observed in both cell lines treated with chrysin. Both cell lines showed different tendencies during chrysin-induced autophagy inhibition, indicating that autophagy has different effects depending on the cell type. In A375SM, the early autophagy inhibitor 3-methyladenine (3-MA) was unaffected; however, cell viability decreased when treated with the late autophagy inhibitor hydroxychloroquine (HCQ). In contrast, HCQ was unaffected in A375P; however, cell viability increased when treated with 3-MA. Chrysin also decreased the phosphorylation of mTOR/S6K pathway proteins, indicating that this pathway is involved in chrysin-induced apoptosis and autophagy for A375SM and A375P. However, studies to elucidate the mechanisms of autophagy and the action of chrysin in vivo are still needed.

7.
Food Sci Anim Resour ; 42(4): 609-624, 2022 Jul.
Artigo em Inglês | MEDLINE | ID: mdl-35855272

RESUMO

Tenebrio molitor larvae, as known as edible insects, has advantages of being rich in protein, and has been recognized as a suitable alternate protein source for broiler and pig feed. Moreover, given their ability to biodegrade polystyrene, a major pollutant, Tenebrio molitor larvae has been proposed as an innovative solution to environmental problems. In the present study, we investigated the toxicity of Tenebrio molitor larvae powder (TMlp) ingested with expanded-polystyrene (W/ eps) through in vitro and in vivo experiments. The objective of this study was to determine whether TMlp W/ eps can be applied as livestock alternative protein source. For in vitro experiments, cytotoxicity test was performed to investigate the effects of TMlp-extract on the viability of estrogen-dependent MCF-7 cells. The possibility of estrogen response was investigated in two groups: Expanded-polystyrene-fed (W/ eps) TMlp group and without expanded-polystyrene-fed (W/o eps) TMlp group. For in vivo experiments, The male Sprague-Dawley rats were divided based on the dosage of TMlp administered and oral administration was performed to every day for 5 weeks. A toxicological assessments were performed, which included clinical signs, food consumption, body and organ weights, hematology, serum chemistry, and hematoxylin and eosin staining of liver and kidney. There were no specific adverse effect of TMlp W/ eps-related findings under the experimental conditions of this study, but further studies on both sexes and animal species differences should be investigated. In conclusion, TMlp W/ eps was considered non-toxic and observed to be applicable as an alternative protein source for livestock feed.

8.
Heliyon ; 8(5): e09309, 2022 May.
Artigo em Inglês | MEDLINE | ID: mdl-35521506

RESUMO

Myricetin, a natural flavonoid present in berries, nuts, and green tea, is well-known for its anticancer properties. Even though several previous studies have reported the anticancer effects induced by myricetin, these effects have not yet been confirmed in the adenocarcinoma gastric cell line (AGS). Moreover, the exact mechanisms of myricetin-induced apoptosis and autophagy have not been clearly identified either. Therefore, in this study, we aimed to examine the role of myricetin in inducing apoptosis and autophagy in AGS gastric cancer cells. First, the survival rate of AGS gastric cancer cells was assessed using the 3-(4, 5-dimethylthiazolyl-2)-2, 5-diphenyltetrazolium bromide (MTT) cell viability assay. Thereafter, the rate of apoptosis was analyzed using4',6-diamidino-2-phenylindole (DAPI) staining as well as annexin V and propidium iodide (PI) staining, and the expression of the proteins associated with apoptosis, PI3K/Akt/mTOR pathway, and autophagy was examined by western blotting. We observed that myricetin reduced the survival rate of AGS gastric cancer cells by inhibiting the PI3K/Akt/mTOR pathway, thereby inducing apoptosis and autophagy. Similar results were also obtained in vivo, and tumor growth was inhibited. Therefore, in the AGS gastric cancer cells, myricetin seems to inhibit the PI3K/Akt/mTOR pathway, which in turn leads to apoptosis in vitroand in vivo, cell-protective autophagy, as well as inhibition of cancer cell proliferation. These results indicate the potential of myricetin as a natural anticancer agent.

9.
Int J Mol Med ; 49(4)2022 Apr.
Artigo em Inglês | MEDLINE | ID: mdl-35234274

RESUMO

Myricetin, a flavonoid found in fruits and vegetables, is known to have antioxidant and anticancer effects. However, the anticancer effects of myricetin on SK­BR­3 human breast cancer cells have not been elucidated. In the present study, the anticancer effects of myricetin were confirmed in human breast cancer SK­BR­3 cells. As the concentration of myricetin increased, the cell viability decreased. DAPI (4',6­diamidino­2­phenylindole) and Annexin V/PI staining also revealed a significant increase in apoptotic bodies and apoptosis. Western blot analysis was performed to confirm the myricetin­induced expression of apoptosis­related proteins. The levels of cleaved PARP and Bax proteins were increased, and that of Bcl­2 was decreased. The levels of proteins in the mitogen­activated protein kinase (MAPK) pathway were examined to confirm the mechanism of myricetin­induced apoptosis, and it was found that the expression levels of phosphorylated c­Jun N­terminal kinase (p­JNK) and phosphorylated mitogen­activated protein kinases (p­p38) were increased, whereas that of phosphorylated extracellular­regulated kinase (p­ERK) was decreased. It was also demonstrated that myricetin induced autophagy by promoting autophagy­related proteins such as microtubule­associated protein 1A/1B­light chain 3 (LC 3) and beclin 1. In addition, 3­methyladenine (3­MA) was used to evaluate the association between cell viability and autophagy in cells treated with myricetin. The results showed that simultaneous treatment with 3­MA and myricetin promoted the apoptosis of breast cancer cells. Furthermore, treatment with a JNK inhibitor reduced cell viability, promoted Bax expression, and reduced the expression of p­JNK, Bcl­2, and LC 3­II/I. These results suggest that myricetin induces apoptosis via the MAPK pathway and regulates JNK­mediated autophagy in SK­BR­3 cells. In conclusion, myricetin shows potential as a natural anticancer agent in SK­BR­3 cells.


Assuntos
Apoptose , Flavonoides , Sistema de Sinalização das MAP Quinases , Proteínas Quinases Ativadas por Mitógeno , Apoptose/efeitos dos fármacos , Autofagia/efeitos dos fármacos , Neoplasias da Mama/tratamento farmacológico , Neoplasias da Mama/enzimologia , Neoplasias da Mama/patologia , Linhagem Celular Tumoral , Feminino , Flavonoides/farmacologia , Humanos
10.
Chem Biol Interact ; 347: 109619, 2021 Sep 25.
Artigo em Inglês | MEDLINE | ID: mdl-34364837

RESUMO

Owing to the ineffectiveness of the currently used therapies against melanoma, there has been a shift in focus toward alternative therapies involving the use of natural compounds. This study assessed the anticancer effects of oleanolic acid (OA) and its ability to induce apoptosis in A375SM and A375P melanoma cells in vivo. Compared to the control group, viability of A375P and A375SM cells decreased following OA treatment. In OA-treated A375SM and A375P cells, 4',6-diamidino-2-phenylindole staining showed an increase in the apoptotic body, and flow cytometry revealed increased number of apoptotic cells compared to that in the control group. OA-treated A375SM cells exhibited an increased expression of the apoptotic proteins, cleaved poly (ADP-ribose) polymerase (PARP) and B-cell lymphoma (Bcl)-2-associated X protein (Bax) as well as decreased expression of the antiapoptotic protein Bcl-2 compared to that in the control group. In OA-treated A375P cells, expression patterns of cleaved PARP and Bcl-2 were similar to those in OA-treated A375SM cells; however, no difference was reported in the expression of Bax compared to that in the control group. Additionally, OA-treated melanoma cells showed decreased expression of phospho-nuclear factor-κB (p-NF-κB), phospho-inhibitor of nuclear factor-κBα (p-IκBα), and phospho-IκB kinase αß than that in the control group. Moreover, immunohistochemistry showed a comparatively decreased level of p-NF-κB in the OA-treated group than that in the control group. Xenograft analysis confirmed the in vivo anticancer effects of OA against A375SM cells. Terminal deoxynucleotidyl transferase dUTP nick end labeling (TUNEL) assay revealed an increased number of TUNEL-positive cells in the OA-treated group compared to that in the control group. In conclusion, the study results suggest that OA induces apoptosis of A375SM and A375P cells in vitro and apoptosis of A375SM cells in vivo. Furthermore, the in vitro and in vivo anticancer effects were mediated by the NF-κB pathway.


Assuntos
Antineoplásicos/uso terapêutico , Neoplasias/tratamento farmacológico , Ácido Oleanólico/uso terapêutico , Animais , Antineoplásicos/farmacologia , Antineoplásicos/toxicidade , Apoptose/efeitos dos fármacos , Linhagem Celular Tumoral , Proliferação de Células/efeitos dos fármacos , Ensaios de Seleção de Medicamentos Antitumorais , Feminino , Humanos , Rim/citologia , Rim/efeitos dos fármacos , Rim/metabolismo , Fígado/citologia , Fígado/efeitos dos fármacos , Fígado/metabolismo , Camundongos Endogâmicos BALB C , Subunidade p50 de NF-kappa B/metabolismo , Neoplasias/metabolismo , Ácido Oleanólico/farmacologia , Ácido Oleanólico/toxicidade , Transdução de Sinais/efeitos dos fármacos , Ensaios Antitumorais Modelo de Xenoenxerto
11.
Biosci Rep ; 41(1)2021 01 29.
Artigo em Inglês | MEDLINE | ID: mdl-33403388

RESUMO

Shikonin, a natural product isolated from the roots of Lithospermum erythrorhizon, exhibits pharmacological effects against inflammation, ulcers, infections, and tumors. In the present study, we aimed to investigate the antitumor effects of shikonin on the human melanoma cell line, A375SM, and in an in vivo mouse xenograft model. We examined the anticancer effects of shikonin by in vitro experiments (MTT (3-(4,5-dimethylthiazol-2-yl)-2,5-diphenyltetrazolium bromide) assay, 4',6-diamidino-2-phenylindole (DAPI) stain, annexin V/ propidium iodide (PI) stain, and protein analysis of apoptosis and mitogen-activated protein kinase (MAPK) pathways). Further, the anticancer effect in vivo was confirmed through a xenograft model. Our results showed that shikonin inhibited the proliferation of melanoma cells in a dose-dependent manner. In addition, shikonin significantly increased nucleus and chromatin condensation and early/late apoptosis. Shikonin also increased the pro-apoptotic proteins and decreased the anti-apoptotic proteins. Additionally, shikonin was overexpressed in MAPK pathways. Investigation of the effects of shikonin in a mouse xenograft model not only showed decreased A375SM tumor volume but also increased apoptosis as determined by terminal deoxynucleotidyl transferase dUTP nick-end labeling (TUNEL) assay. Furthermore, pathologic changes were not observed in the liver and kidney of mice. Collectively, the study indicated that shikonin inhibited the proliferation of the human melanoma cells by inducing apoptosis, mediated by MAPK pathway and that it is a potential candidate for an anticancer drug against melanoma cancer.


Assuntos
Apoptose/efeitos dos fármacos , Proliferação de Células/efeitos dos fármacos , Sistema de Sinalização das MAP Quinases , Melanoma/patologia , Naftoquinonas/farmacologia , Animais , Linhagem Celular Tumoral , Humanos , Marcação In Situ das Extremidades Cortadas , Melanoma/enzimologia , Melanoma/metabolismo , Camundongos , Proteínas de Neoplasias/metabolismo , Ensaios Antitumorais Modelo de Xenoenxerto
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA