Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 7 de 7
Filtrar
Mais filtros








Base de dados
Intervalo de ano de publicação
1.
Sci Rep ; 13(1): 11630, 2023 Jul 19.
Artigo em Inglês | MEDLINE | ID: mdl-37468566

RESUMO

Quantum secure metrology protocols harness quantum effects to probe remote systems with enhanced precision and security. Traditional QSM protocols require multi-partite entanglement, which limits its near-term implementation due to technological constraints. This paper proposes a QSM scheme that employs Bell pairs to provide unconditional security while offering precision scaling beyond the standard quantum limit. We provide a detailed comparative performance analysis of our proposal under multiple attacks. We found that the employed controlled encoding strategy is far better than the parallel encoding of multi-partite entangled states with regard to the secrecy of the parameter. We also identify and characterize an intrinsic trade-off relationship between the maximum achievable precision and security under the limited availability of resources. The dynamic scalability of the proposed protocol makes it suitable for large-scale network sensing scenarios.

2.
Sensors (Basel) ; 21(12)2021 Jun 19.
Artigo em Inglês | MEDLINE | ID: mdl-34205247

RESUMO

Enabled by the fifth-generation (5G) and beyond 5G communications, large-scale deployments of Internet-of-Things (IoT) networks are expected in various application fields to handle massive machine-type communication (mMTC) services. Device-to-device (D2D) communications can be an effective solution in massive IoT networks to overcome the inherent hardware limitations of small devices. In such D2D scenarios, given that a receiver can benefit from the signal-to-noise-ratio (SNR) advantage through diversity and array gains, cooperative transmission (CT) can be employed, so that multiple IoT nodes can create a virtual antenna array. In particular, Opportunistic Large Array (OLA), which is one type of CT technique, is known to provide fast, energy-efficient, and reliable broadcasting and unicasting without prior coordination, which can be exploited in future mMTC applications. However, OLA-based protocol design and operation are subject to network models to characterize the propagation behavior and evaluate the performance. Further, it has been shown through some experimental studies that the most widely-used model in prior studies on OLA is not accurate for networks with networks with low node density. Therefore, stochastic models using quasi-stationary Markov chain are introduced, which are more complex but more exact to estimate the key performance metrics of the OLA transmissions in practice. Considering the fact that such propagation models should be selected carefully depending on system parameters such as network topology and channel environments, we provide a comprehensive survey on the analytical models and framework of the OLA propagation in the literature, which is not available in the existing survey papers on OLA protocols. In addition, we introduce energy-efficient OLA techniques, which are of paramount importance in energy-limited IoT networks. Furthermore, we discuss future research directions to combine OLA with emerging technologies.

3.
Sensors (Basel) ; 20(16)2020 Aug 16.
Artigo em Inglês | MEDLINE | ID: mdl-32824301

RESUMO

Due to their high mobility, unmanned aerial vehicles (UAVs) can offer better connectivity by complement or replace with the existing terrestrial base stations (BSs) in the mobile cellular networks. In particular, introducing UAV and millimeter wave (mmWave) technologies can better support the future wireless networks with requirements of high data rate, low latency, and seamless connectivity. However, it is widely known that mmWave signals are susceptible to blockages because of their poor diffraction. In this context, we consider macro-diversity achieved by the multiple UAV BSs, which are randomly distributed in a spherical swarm. Using the widely used channel model incorporated with the distance-based random blockage effects, which is proposed based on stochastic geometry and random shape theory, we investigate the outage performance of the mmWave UAV swarm network. Further, based on our analysis, we show how to minimize the outage rate by adjusting various system parameters such as the size of the UAV swarm relative to the distance to the receiver.

4.
Sensors (Basel) ; 20(10)2020 May 13.
Artigo em Inglês | MEDLINE | ID: mdl-32414188

RESUMO

This paper aims to unlock the unlicensed band potential in realizing the Industry 4.0 communication goals of the Fifth-Generation (5G) and beyond. New Radio in the Unlicensed band (NR-U) is a new NR Release 16 mode of operation that has the capability to offer the necessary technology for cellular operators to integrate the unlicensed spectrum into 5G networks. NR-U enables both uplink and downlink operation in unlicensed bands, supporting 5G advanced features of ultra-high-speed, high bandwidth, low latency, and improvement in the reliability of wireless communications, which is essential to address massive-scale and highly-diverse future industrial networks. This paper highlights NR-U as a next-generation communication technology for smart industrial network communication and discusses the technology trends adopted by 5G in support of the Industry 4.0 revolution. However, due to operation in the shared/unlicensed spectrum, NR-U possesses several regulatory and coexistence challenges, limiting its application for operationally intensive environments such as manufacturing, supply chain, transportation systems, and energy. Thus, we discuss the significant challenges and potential solution approaches such as shared maximum channel occupancy time (MCOT), handover skipping, the self-organized network (SON), the adaptive back-off mechanism, and the multi-domain coexistence approach to overcome the unlicensed/shared band challenges and boost the realization of NR-U technology in mission-critical industrial applications. Further, we highlight the role of machine learning in providing the necessary intelligence and adaptation mechanisms for the realization of industrial 5G communication goals.

5.
Sensors (Basel) ; 19(21)2019 Nov 04.
Artigo em Inglês | MEDLINE | ID: mdl-31689959

RESUMO

This paper presents cooperative transmission (CT), where multiple relays are used to achieve array and diversity gains, as an enabling technology for Internet of Things (IoT) networks with hardware-limited devices. We investigate a channel coding aided decode-and-forward (DF) relaying network, considering a two-hop multiple-relay network, where the data transmission between the source and the destination is realized with the help of DF relays. Low density parity check (LDPC) codes are adopted as forward error correction (FEC) codes to encode and decode the data both at the source and relays. We consider both fixed and variable code rates depending upon the quality-of-service (QoS) provisioning such as spectral efficiency and maximum energy efficiency. Furthermore, an optimal power allocation scheme is studied for the cooperative system under the energy efficiency constraint. We present the simulation results of our proposed scheme, compared with conventional methods, which show that if decoupled code rates are used on both hops then a trade-off has to be maintained between system complexity, transmission delay, and bit error rate (BER).

6.
Sensors (Basel) ; 18(1)2018 Jan 12.
Artigo em Inglês | MEDLINE | ID: mdl-29329248

RESUMO

As an intrinsic part of the Internet of Things (IoT) ecosystem, machine-to-machine (M2M) communications are expected to provide ubiquitous connectivity between machines. Millimeter-wave (mmWave) communication is another promising technology for the future communication systems to alleviate the pressure of scarce spectrum resources. For this reason, in this paper, we consider multi-hop M2M communications, where a machine-type communication (MTC) device with the limited transmit power relays to help other devices using mmWave. To be specific, we focus on hop distance statistics and their impacts on system performances in multi-hop wireless networks (MWNs) with directional antenna arrays in mmWave for M2M communications. Different from microwave systems, in mmWave communications, wireless channel suffers from blockage by obstacles that heavily attenuate line-of-sight signals, which may result in limited per-hop progress in MWNs. We consider two routing strategies aiming at different types of applications and derive the probability distributions of their hop distances. Moreover, we provide their baseline statistics assuming the blockage-free scenario to quantify the impact of blockages. Based on the hop distance analysis, we propose a method to estimate the end-to-end performances (e.g., outage probability, hop count, and transmit energy) of the mmWave MWNs, which provides important insights into mmWave MWN design without time-consuming and repetitive end-to-end simulation.

7.
Sensors (Basel) ; 17(11)2017 Nov 05.
Artigo em Inglês | MEDLINE | ID: mdl-29113081

RESUMO

In this paper, we consider clustered unmanned vehicle (UV) sensor networks for swarm sensing applications in a linear structure such as highway, tunnel, underwater pipelines, power lines, and international border. We assume that the linear UV sensor networks follow Thomas cluster process (TCP), in which the cluster locations are modelled by Poisson point process (PPP), while the cluster members (UVs) are normally distributed around their cluster centers. We focus on communications between UVs within a cluster such as local sensing data transfer or swarm coordination, where multiple UV pairs can share the same frequency band simultaneously. Thus, in the presence of co-channel interference both from the same cluster and the other clusters, we study the coverage and area spectral efficiency of the clustered UV sensor networks in a linear topology.

SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA