Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 82
Filtrar
1.
Cell Mol Life Sci ; 81(1): 142, 2024 Mar 15.
Artigo em Inglês | MEDLINE | ID: mdl-38485770

RESUMO

Thioredoxin interacting protein (Txnip) is a stress-responsive factor regulating Trx1 for redox balance and involved in diverse cellular processes including proliferation, differentiation, apoptosis, inflammation, and metabolism. However, the biological role of Txnip function in stem cell pluripotency has yet to be investigated. Here, we reveal the novel functions of mouse Txnip in cellular reprogramming and differentiation onset by involving in glucose-mediated histone acetylation and the regulation of Oct4, which is a fundamental component of the molecular circuitry underlying pluripotency. During reprogramming or PSC differentiation process, cellular metabolic and chromatin remodeling occur in order to change its cellular fate. Txnip knockout promotes induced pluripotency but hinders initial differentiation by activating pluripotency factors and promoting glycolysis. This alteration affects the intracellular levels of acetyl-coA, a final product of enhanced glycolysis, resulting in sustained histone acetylation on active PSC gene regions. Moreover, Txnip directly interacts with Oct4, thereby repressing its activity and consequently deregulating Oct4 target gene transcriptions. Our work suggests that control of Txnip expression is crucial for cell fate transitions by modulating the entry and exit of pluripotency.


Assuntos
Reprogramação Celular , Histonas , Animais , Camundongos , Proteínas de Transporte/genética , Proteínas de Transporte/metabolismo , Diferenciação Celular/genética , Histonas/metabolismo , Processamento de Proteína Pós-Traducional , Tiorredoxinas/genética , Tiorredoxinas/metabolismo
2.
Cancer Cell Int ; 24(1): 73, 2024 Feb 14.
Artigo em Inglês | MEDLINE | ID: mdl-38355643

RESUMO

BACKGROUND: Rho guanine nucleotide dissociation inhibitor 1 (RhoGDI1) plays an important role in diverse cellular processes by regulating Rho guanosine triphosphate (GTP)ases activity. RhoGDI1 phosphorylation regulates the spatiotemporal activation of Rho GTPases during cell migration. In this study, we identified polo-like kinase 1 (PLK1) as a novel kinase of RhoGDI1 and investigated the molecular mechanism by which the interaction between RhoGDI1 and PLK1 regulates cancer cell migration. METHODS: Immunoprecipitation, GST pull-down assay, and proximity ligation assay (PLA) were performed to analyze the interaction between RhoGDI1 and PLK1. In vitro kinase assay and immunoprecipitation were performed with Phospho-(Ser/Thr) antibody. We evaluated RhoA activation using RhoGTPases activity assay. Cell migration and invasion were analyzed by transwell assays. RESULTS: GST pull-down assays and PLA showed that PLK1 directly interacted with RhoGDI1 in vitro and in vivo. Truncation mutagenesis revealed that aa 90-111 of RhoGDI1 are critical for interacting with PLK1. We also showed that PLK1 phosphorylated RhoGDI1 at Thr7 and Thr91, which induces cell motility. Overexpression of the GFP-tagged RhoGDI1 truncated mutant (aa 90-111) inhibited the interaction of PLK1 with RhoGDI1 and attenuated RhoA activation by PLK1. Furthermore, the overexpression of the RhoGDI1 truncated mutant reduced cancer cell migration and invasion in vitro and suppressed lung metastasis in vivo. CONCLUSIONS: Collectively, we demonstrate that the phosphorylation of RhoGDI1 by PLK1 promotes cancer cell migration and invasion through RhoA activation. This study connects the interaction between PLK1 and RhoGDI1 to the promotion of cancer cell behavior associated with malignant progression, thereby providing opportunities for cancer therapeutic interventions.

3.
In Vivo ; 38(2): 630-639, 2024.
Artigo em Inglês | MEDLINE | ID: mdl-38418129

RESUMO

BACKGROUND/AIM: Cisplatin [cis-diamminedichloroplatinum(II), CDDP] is a widely used and effective antitumor drug in clinical settings, notorious for its nephrotoxic side effects. This study investigated the mechanisms of CDDP-induced damage in African green monkey kidney (Vero) cells, with a focus on the role of Peroxiredoxin I (Prx I) and Peroxiredoxin II (Prx II) of the peroxiredoxin (Prx) family, which scavenge reactive oxygen species (ROS). MATERIALS AND METHODS: We utilized the Vero cell line derived from African green monkey kidneys and exposed these cells to various concentrations of CDDP. Cell viability, apoptosis, ROS levels, and mitochondrial membrane potential were assessed. RESULTS: CDDP significantly compromised Vero cell viability by elevating both cellular and mitochondrial ROS, which led to increased apoptosis. Pretreatment with the ROS scavenger N-acetyl-L-cysteine (NAC) effectively reduced CDDP-induced ROS accumulation and subsequent cell apoptosis. Furthermore, CDDP reduced Prx I and Prx II levels in a dose- and time-dependent manner. The inhibition of Prx I and II exacerbated cell death, implicating their role in CDDP-induced accumulation of cellular ROS. Additionally, CDDP enhanced the phosphorylation of MAPKs (p38, ERK, and JNK) without affecting AKT. The inhibition of these pathways significantly attenuated CDDP-induced apoptosis. CONCLUSION: The study highlights the involvement of Prx proteins in CDDP-induced nephrotoxicity and emphasizes the central role of ROS in cell death mediation. These insights offer promising avenues for developing clinical interventions to mitigate the nephrotoxic effects of CDDP.


Assuntos
Cisplatino , Peroxirredoxinas , Animais , Chlorocebus aethiops , Cisplatino/farmacologia , Espécies Reativas de Oxigênio/metabolismo , Peroxirredoxinas/metabolismo , Transdução de Sinais , Apoptose , Rim/metabolismo
4.
J Thromb Haemost ; 22(3): 834-850, 2024 Mar.
Artigo em Inglês | MEDLINE | ID: mdl-38072375

RESUMO

BACKGROUND: Platelets are generated from megakaryocytes (MKs), mainly located in the bone marrow (BM). Megakaryopoiesis can be affected by genetic disorders, metabolic diseases, and aging. The molecular mechanisms underlying platelet count regulation have not been fully elucidated. OBJECTIVES: In the present study, we investigated the role of thioredoxin-interacting protein (TXNIP), a protein that regulates cellular metabolism in megakaryopoiesis, using a Txnip-/- mouse model. METHODS: Wild-type (WT) and Txnip-/- mice (2-27-month-old) were studied. BM-derived MKs were analyzed to investigate the role of TXNIP in megakaryopoiesis with age. The global transcriptome of BM-derived CD41+ megakaryocyte precursors (MkPs) of WT and Txnip-/- mice were compared. The CD34+ hematopoietic stem cells isolated from human cord blood were differentiated into MKs. RESULTS: Txnip-/- mice developed thrombocytopenia at 4 to 5 months that worsened with age. During ex vivo megakaryopoiesis, Txnip-/- MkPs remained small, with decreased levels of MK-specific markers. Critically, Txnip-/- MkPs exhibited reduced mitochondrial reactive oxygen species, which was related to AKT activity. Txnip-/- MkPs also showed elevated glycolysis alongside increased glucose uptake for ATP production. Total RNA sequencing revealed enrichment for oxidative stress- and apoptosis-related genes in differentially expressed genes between Txnip-/- and WT MkPs. The effects of TXNIP on MKs were recapitulated during the differentiation of human cord blood-derived CD34+ hematopoietic stem cells. CONCLUSION: We provide evidence that the megakaryopoiesis pathway becomes exhausted with age in Txnip-/- mice with a decrease in terminal, mature MKs that response to thrombocytopenic challenge. Overall, this study demonstrates the role of TXNIP in megakaryopoiesis, regulating mitochondrial metabolism.


Assuntos
Megacariócitos , Trombocitopenia , Animais , Camundongos , Antígenos CD34/metabolismo , Plaquetas/metabolismo , Megacariócitos/metabolismo , Estresse Oxidativo , Tiorredoxinas/genética , Tiorredoxinas/metabolismo , Trombocitopenia/metabolismo
5.
Biomol Ther (Seoul) ; 32(1): 115-122, 2024 Jan 01.
Artigo em Inglês | MEDLINE | ID: mdl-38148557

RESUMO

Heat shock protein (HSP) 90 is expressed in most living organisms, and several client proteins of HSP90 are necessary for cancer cell survival and growth. Previously, we found that HSP90 was cleaved by histone deacetylase (HDAC) inhibitors and proteasome inhibitors, and the cleavage of HSP90 contributes to their cytotoxicity in K562 leukemia cells. In this study, we first established mouse xenograft models with K562 cells expressing the wild-type or cleavage-resistant mutant HSP90ß and found that the suppression of tumor growth by the HDAC inhibitor suberoylanilide hydroxamic acid (SAHA) was interrupted by the mutation inhibiting the HSP90 cleavage in vivo. Next, we investigated the possible function of thioredoxin interacting protein (TXNIP) in the HSP90 cleavage induced by SAHA. TXNIP is a negative regulator for thioredoxin, an antioxidant protein. SAHA transcriptionally induced the expression of TXNIP in K562 cells. HSP90 cleavage was induced by SAHA also in the thymocytes of normal mice and suppressed by an anti-oxidant and pan-caspase inhibitor. When the thymocytes from the TXNIP knockout mice and their wild-type littermate control mice were treated with SAHA, the HSP90 cleavage was detected in the thymocytes of the littermate controls but suppressed in those of the TXNIP knockout mice suggesting the requirement of TXNIP for HSP90 cleavage. We additionally found that HSP90 cleavage was induced by actinomycin D, ß-mercaptoethanol, and p38 MAPK inhibitor PD169316 suggesting its prevalence. Taken together, we suggest that HSP90 cleavage occurs also in vivo and contributes to the anti-cancer activity of various drugs in a TXNIP-dependent manner.

6.
Front Immunol ; 14: 1192907, 2023.
Artigo em Inglês | MEDLINE | ID: mdl-37539051

RESUMO

Gene-engineered immune cell therapies have partially transformed cancer treatment, as exemplified by the use of chimeric antigen receptor (CAR)-T cells in certain hematologic malignancies. However, there are several limitations that need to be addressed to target more cancer types. Natural killer (NK) cells are a type of innate immune cells that represent a unique biology in cancer immune surveillance. In particular, NK cells obtained from heathy donors can serve as a source for genetically engineered immune cell therapies. Therefore, NK-based therapies, including NK cells, CAR-NK cells, and antibodies that induce antibody-dependent cellular cytotoxicity of NK cells, have emerged. With recent advances in genetic engineering and cell biology techniques, NK cell-based therapies have become promising approaches for a wide range of cancers, viral infections, and senescence. This review provides a brief overview of NK cell characteristics and summarizes diseases that could benefit from NK-based therapies. In addition, we discuss recent preclinical and clinical investigations on the use of adoptive NK cell transfer and agents that can modulate NK cell activity.


Assuntos
Células Matadoras Naturais , Neoplasias , Humanos , Imunoterapia Adotiva/métodos , Imunoterapia/métodos , Terapia Genética
7.
Int J Mol Sci ; 24(10)2023 May 15.
Artigo em Inglês | MEDLINE | ID: mdl-37240104

RESUMO

Natural killer (NK) cells are innate immune cells that demonstrate cytolytic activity against tumor cells, virus-infected cells and other physiologically stressed cells, such as senescent cells [...].


Assuntos
Células Matadoras Naturais , Neoplasias , Humanos , Imunoterapia , Neoplasias/terapia
8.
Immune Netw ; 23(2): e14, 2023 Apr.
Artigo em Inglês | MEDLINE | ID: mdl-37179747

RESUMO

Immune status including the immune cells and cytokine profiles has been implicated in the development of endometriosis. In this study, we analyzed Th17 cells and IL-17A in peritoneal fluid (PF) and endometrial tissues of patients with (n=10) and without (n=26) endometriosis. Our study has shown increased Th17 cell population and IL-17A level in PF with endometriosis patients. To determine the roles of IL-17A and Th17 cells in the development of endometriosis, the effect of IL-17A, major cytokine of Th17, on endometrial cells isolated from endometriotic tissues was examined. Recombinant IL-17A promoted survival of endometrial cells accompanied by increased expression of anti-apoptotic genes, including Bcl-2 and MCL1, and the activation of ERK1/2 signaling. In addition, treatment of IL-17A to endometrial cells inhibited NK cell mediated cytotoxicity and induced HLA-G expression on endometrial cells. IL-17A also promoted migration of endometrial cells. Our data suggest that Th17 cells and IL-17A play critical roles in the development of endometriosis by promoting endometrial cell survival and conferring a resistance to NK cell cytotoxicity through the activation of ERK1/2 signaling. Targeting IL-17A has potential as a new strategy for the treatment of endometriosis.

9.
Leukemia ; 37(4): 807-819, 2023 04.
Artigo em Inglês | MEDLINE | ID: mdl-36932165

RESUMO

Clinical effect of donor-derived natural killer cell infusion (DNKI) after HLA-haploidentical hematopoietic cell transplantation (HCT) was evaluated in high-risk myeloid malignancy in phase 2, randomized trial. Seventy-six evaluable patients (aged 21-70 years) were randomized to receive DNKI (N = 40) or not (N = 36) after haploidentical HCT. For the HCT conditioning, busulfan, fludarabine, and anti-thymocyte globulin were administered. DNKI was given twice 13 and 20 days after HCT. Four patients in the DNKI group failed to receive DNKI. In the remaining 36 patients, median DNKI doses were 1.0 × 108/kg and 1.4 × 108/kg on days 13 and 20, respectively. Intention-to-treat analysis showed a lower disease progression for the DNKI group (30-month cumulative incidence, 35% vs 61%, P = 0.040; subdistribution hazard ratio, 0.50). Furthermore, at 3 months after HCT, the DNKI patients showed a 1.8- and 2.6-fold higher median absolute blood count of NK and T cells, respectively. scRNA-sequencing analysis in seven study patients showed that there was a marked increase in memory-like NK cells in DNKI patients which, in turn, expanded the CD8+ effector-memory T cells. In high-risk myeloid malignancy, DNKI after haploidentical HCT reduced disease progression. This enhanced graft-vs-leukemia effect may be related to the DNKI-induced, post-HCT expansion of NK and T cells. Clinical trial number: NCT02477787.


Assuntos
Doença Enxerto-Hospedeiro , Transplante de Células-Tronco Hematopoéticas , Leucemia Mieloide Aguda , Humanos , Interleucina-15 , Doença Enxerto-Hospedeiro/patologia , Células Matadoras Naturais/patologia , Progressão da Doença , Leucemia Mieloide Aguda/terapia , Leucemia Mieloide Aguda/patologia , Condicionamento Pré-Transplante
10.
Nat Immunol ; 24(3): 463-473, 2023 03.
Artigo em Inglês | MEDLINE | ID: mdl-36624164

RESUMO

The formation of an immunological synapse (IS) is essential for natural killer (NK) cells to eliminate target cells. Despite an advanced understanding of the characteristics of the IS and its formation processes, the mechanisms that regulate its stability via the cytoskeleton are unclear. Here, we show that Nogo receptor 1 (NgR1) has an important function in modulating NK cell-mediated killing by destabilization of IS formation. NgR1 deficiency or blockade resulted in improved tumor control of NK cells by enhancing NK-to-target cell contact stability and regulating F-actin dynamics during IS formation. Patients with tumors expressing abundant NgR1 ligand had poor prognosis despite high levels of NK cell infiltration. Thus, our study identifies NgR1 as an immune checkpoint in IS formation and indicates a potential approach to improve the cytolytic function of NK cells in cancer immunotherapy.


Assuntos
Sinapses Imunológicas , Neoplasias , Humanos , Receptores de Células Matadoras Naturais , Receptor Nogo 1 , Células Matadoras Naturais , Actinas , Neoplasias/patologia
11.
Cells ; 11(24)2022 12 16.
Artigo em Inglês | MEDLINE | ID: mdl-36552865

RESUMO

Kallikrein-related peptidase (KLK)6 is associated with inflammatory diseases and neoplastic progression. KLK6 is aberrantly expressed in several solid tumors and regulates cancer development, metastatic progression, and drug resistance. However, the function of KLK6 in the tumor microenvironment remains unclear. This study aimed to determine the role of KLK6 in the tumor microenvironment. Here, we uncovered the mechanism underlying KLK6-mediated cross-talk between cancer cells and macrophages. Compared with wild-type mice, KLK6-/- mice showed less tumor growth and metastasis in the B16F10 melanoma and Lewis lung carcinoma (LLC) xenograft model. Mechanistically, KLK6 promoted the secretion of tumor necrosis factor-alpha (TNF-α) from macrophages via the activation of protease-activated receptor-1 (PAR1) in an autocrine manner. TNF-α secreted from macrophages induced the release of the C-X-C motif chemokine ligand 1 (CXCL1) from melanoma and lung carcinoma cells in a paracrine manner. The introduction of recombinant KLK6 protein in KLK6-/- mice rescued the production of TNF-α and CXCL1, tumor growth, and metastasis. Inhibition of PAR1 activity suppressed these malignant phenotypes rescued by rKLK6 in vitro and in vivo. Our findings suggest that KLK6 functions as an important molecular link between macrophages and cancer cells during malignant progression, thereby providing opportunities for therapeutic intervention.


Assuntos
Calicreínas , Melanoma , Receptor PAR-1 , Animais , Camundongos , Calicreínas/metabolismo , Macrófagos/metabolismo , Receptor PAR-1/metabolismo , Microambiente Tumoral , Fator de Necrose Tumoral alfa
12.
Front Med (Lausanne) ; 9: 973681, 2022.
Artigo em Inglês | MEDLINE | ID: mdl-36059847

RESUMO

Aurantii Fructus Immaturus (AFI), extensively used in traditional herbal medicine, is known to have diverse physiological effects against various diseases, including obesity, diabetes, and cardiovascular disease. However, the effects of AFI on the immune system, especially natural killer (NK) cells, remain largely unknown. We aimed to investigate the effect of AFI on NK cell activity in vitro and in vivo and to elucidate the underlying mechanisms. Further, we verified the anticancer efficacy of AFI in a mouse lung metastasis model, underscoring the therapeutic potential of AFI in cancer therapy. Our results revealed that AFI significantly enhanced the cytolytic activity of NK cells in a dose-dependent manner, accompanied by an increase in the expression of NK cell-activating receptors, especially NKp30 and NKp46. AFI treatment also increased the expression of cytolytic granules, including granzyme B and perforin. Furthermore, the expression of CD107a, a degranulation marker, was increased upon treatment with AFI. A signaling study using western blot analysis demonstrated that the phosphorylation of extracellular signal-regulated kinase (ERK) was involved in increasing the NK cell activity following AFI treatment. In the in vivo study performed in mice, oral administration of AFI markedly enhanced the cytotoxic activity of spleen mononuclear cells against YAC-1 cells, which was accompanied by NKp46 upregulation. In addition, we confirmed that cancer metastasis was inhibited in a mouse cancer metastasis model, established using the mouse melanoma B16F10 cell line, by the administration of AFI in vivo. Collectively, these results indicate that AFI enhances NK cell-mediated cytotoxicity in vitro and in vivo via activation of the ERK signaling pathway and suggest that AFI could be a potential supplement for cancer immunotherapy.

13.
J Exp Clin Cancer Res ; 41(1): 212, 2022 Jun 29.
Artigo em Inglês | MEDLINE | ID: mdl-35768842

RESUMO

BACKGROUND: Identifying biomarkers related to the diagnosis and treatment of gastric cancer (GC) has not made significant progress due to the heterogeneity of tumors. Genes involved in histological classification and genetic correlation studies are essential to develop an appropriate treatment for GC. METHODS: In vitro and in vivo lentiviral shRNA library screening was performed. The expression of Synaptotagmin (SYT11) in the tumor tissues of patients with GC was confirmed by performing Immunohistochemistry, and the correlation between the expression level and the patient's survival rate was analyzed. Phospho-kinase array was performed to detect Jun N-terminal kinase (JNK) phosphorylation. SYT11, JNK, and MKK7 complex formation was confirmed by western blot and immunoprecipitation assays. We studied the effects of SYT11 on GC proliferation and metastasis, real-time cell image analysis, adhesion assay, invasion assay, spheroid formation, mouse xenograft assay, and liver metastasis. RESULTS: SYT11 is highly expressed in the stem-like molecular subtype of GC in transcriptome analysis of 527 patients with GC. Moreover, SYT11 is a potential prognostic biomarker for histologically classified diffuse-type GC. SYT11 functions as a scaffold protein, binding both MKK7 and JNK1 signaling molecules that play a role in JNK1 phosphorylation. In turn, JNK activation leads to a signaling cascade resulting in cJun activation and expression of downstream genes angiopoietin-like 2 (ANGPTL2), thrombospondin 4 (THBS4), Vimentin, and junctional adhesion molecule 3 (JAM3), which play a role in epithelial-mesenchymal transition (EMT). SNU484 cells infected with SYT11 shRNA (shSYT11) exhibited reduced spheroid formation, mouse tumor formation, and liver metastasis, suggesting a pro-oncogenic role of SYT11. Furthermore, SYT11-antisense oligonucleotide (ASO) displayed antitumor activity in our mouse xenograft model and was conferred an anti-proliferative effect in SNU484 and MKN1 cells. CONCLUSION: SYT11 could be a potential therapeutic target as well as a prognostic biomarker in patients with diffuse-type GC, and SYT11-ASO could be used in therapeutic agent development for stem-like molecular subtype diffuse GC.


Assuntos
Proteína 2 Semelhante a Angiopoietina , MAP Quinase Quinase 7 , Sistema de Sinalização das MAP Quinases , Neoplasias Gástricas , Sinaptotagminas , Proteína 2 Semelhante a Angiopoietina/metabolismo , Animais , Biomarcadores Tumorais/genética , Biomarcadores Tumorais/metabolismo , Carcinogênese/genética , Linhagem Celular Tumoral , Movimento Celular/genética , Proliferação de Células , Transição Epitelial-Mesenquimal/genética , Xenoenxertos , Humanos , Neoplasias Hepáticas/genética , Neoplasias Hepáticas/metabolismo , Neoplasias Hepáticas/secundário , MAP Quinase Quinase 7/metabolismo , Camundongos , RNA Interferente Pequeno/farmacologia , Neoplasias Gástricas/genética , Neoplasias Gástricas/metabolismo , Neoplasias Gástricas/patologia , Sinaptotagminas/biossíntese , Sinaptotagminas/genética , Sinaptotagminas/metabolismo
14.
Int Immunopharmacol ; 107: 108618, 2022 Jun.
Artigo em Inglês | MEDLINE | ID: mdl-35219164

RESUMO

Ginseng is one of the most widely used herbal remedies for various diseases worldwide. Ginsenoside Rg3 (G-Rg3), the main component of ginseng, possesses several pharmacological properties, including anti-inflammatory, anti-tumor, antioxidant, anti-obesity, and immunomodulatory activities. However, the effect of G-Rg3 on natural killer (NK) cells in humans is not fully understood. Here, we investigated the effect of G-Rg3 on NK cell function and differentiation and elucidated the underlying mechanism. G-Rg3 increased NK cell cytotoxicity and simultaneously increased the expression of NK-activating receptors, NKp44, NKp46, and NKp30. Additionally, G-Rg3 increased the mRNA expression of NK cytolytic molecules, granzyme B and perforin. The expression of CD107a, a marker of NK cell degranulation, also increased in G-Rg3-treated NK cells. We therefore proceeded to identify which MAPK signaling pathway was involved in G-Rg3-mediated cytolytic activity. Treatment with G-Rg3 increased the phosphorylation levels of extracellular signal-regulated kinase (ERK), whereas ERK inhibition eliminated G-Rg3-induced NK cell cytotoxicity, suggesting the involvement of the ERK pathway. G-Rg3 did not affect the rate of differentiation of human cord-blood-derived NK cells; however, it increased the functional maturation of differentiated NK cells and promoted their cytotoxicity. The G-Rg3 isomer, 20(R)-Rg3, effectively activated NK cells via the extracellular signal-regulated kinase (ERK) signaling pathway, whereas 20(S)-Rg3 had no effect on NK cell activity. Altogether, the results demonstrated that 20(R)-Rg3 promoted NK cell activity via activation of the MAPK/ERK pathway, suggesting that 20(R)-Rg3 may be used as an activator of NK cell cytotoxicity for the treatment of diverse types of cancers.


Assuntos
Ginsenosídeos , Panax , MAP Quinases Reguladas por Sinal Extracelular/metabolismo , Ginsenosídeos/farmacologia , Humanos , Células Matadoras Naturais/metabolismo , Sistema de Sinalização das MAP Quinases , Panax/metabolismo , Transdução de Sinais
15.
Artigo em Inglês | MEDLINE | ID: mdl-35116070

RESUMO

Prostate cancer is one of the major causes of cancer-related deaths among men globally. Medicinal plants have been explored as alternative treatment options. Herein, we assessed the in vitro cytotoxic effects of 70% ethanolic root extracts of six-month-old micropropagated Prunus africana (PIR) on PC-3 prostate cancer cells as an alternative to the traditionally used P. africana stem-bark extract (PWS) treatment. In vitro assays on PC-3 cells included annexin-V and propidium iodide staining, DAPI staining, and caspase-3 activity analysis through western blotting. PC-3 cells were exposed to PWS and PIR at different concentrations, and dose-dependent antiprostate cancer effects were observed. PC-3 cell viability was determined using CCK-8 assay, which yielded IC50 values of 52.30 and 82.40 µg/mL for PWS and PIR, respectively. Annexin-V and PI staining showed dose-dependent apoptosis of PC-3 cells. Significant (p < 0.001) percent of DAPI-stained apoptotic PC-3 cells were observed in PWS, PIR, and doxorubicin treatment compared with the negative control. PWS treatment substantially elevated cleaved caspase-3 levels in PC-3 cells compared with the PIR treatment. These results provide evidence for the antiprostate cancer potential of PIR and sets a basis for further research to enhance future utilization of roots of young micropropagated P. africana for prostate cancer treatment as an alternative to stem bark. Moreover, micropropagation approach may help provide the required raw materials and hence reduce the demand for P. africana from endangered wild population.

16.
Cell Immunol ; 371: 104454, 2022 01.
Artigo em Inglês | MEDLINE | ID: mdl-34773897

RESUMO

Immune dysregulation is commonly observed in patients with coronavirus disease 2019 (COVID-19). Severe acute respiratory syndrome coronavirus 2 (SARS-CoV-2) induces severe lung inflammation and innate immune cell dysregulation. However, the precise interaction between SARS-CoV-2 and the innate immune system is currently unknown. To understand the interaction between SARS-CoV-2 and natural killer (NK) cells, several SARS-CoV-2 S protein peptides capable of binding to the NKG2D receptor were screened by in silico analysis. Among them, two peptides, cov1 and cov2, bound to NK cells and NKG2D receptors. These cov peptides increased NK cytotoxicity toward lung cancer cells, stimulated interferon gamma (IFN-γ) production by NK cells, and likely mediated these responses through the phosphorylation of Vav1, a key downstream-signaling molecule of NKG2D and NK activation genes. The direct interaction between SARS-CoV-2 and NK cells is a novel finding, and modulation of this interaction has potential clinical application as a therapeutic target for COVID-19.


Assuntos
COVID-19/imunologia , Células Matadoras Naturais/imunologia , Subfamília K de Receptores Semelhantes a Lectina de Células NK/imunologia , Peptídeos/imunologia , SARS-CoV-2/imunologia , Glicoproteína da Espícula de Coronavírus/imunologia , Sequência de Aminoácidos , COVID-19/metabolismo , COVID-19/virologia , Linhagem Celular Tumoral , Citotoxicidade Imunológica/imunologia , Humanos , Interferon gama/imunologia , Interferon gama/metabolismo , Células Matadoras Naturais/metabolismo , Pulmão/imunologia , Pulmão/patologia , Pulmão/virologia , Ativação Linfocitária/imunologia , Subfamília K de Receptores Semelhantes a Lectina de Células NK/metabolismo , Peptídeos/metabolismo , Ligação Proteica , SARS-CoV-2/metabolismo , SARS-CoV-2/fisiologia , Transdução de Sinais/imunologia , Glicoproteína da Espícula de Coronavírus/química , Glicoproteína da Espícula de Coronavírus/metabolismo
17.
Microbiome ; 9(1): 240, 2021 12 15.
Artigo em Inglês | MEDLINE | ID: mdl-34906228

RESUMO

BACKGROUND: The gut microbiota is associated with diverse age-related disorders. Several rejuvenation methods, such as probiotic administration and faecal microbiota transplantation, have been applied to alter the gut microbiome and promote healthy ageing. Nevertheless, prolongation of the health span of aged mice by remodelling the gut microbiome remains challenging. RESULTS: Here, we report the changes in gut microbial communities and their functions in mouse models during ageing and three rejuvenation procedures including co-housing, serum-injection and parabiosis. Our results showed that the compositional structure and gene abundance of the intestinal microbiota changed dynamically during the ageing process. Through the three rejuvenation procedures, we observed that the microbial community and intestinal immunity of aged mice were comparable to those of young mice. The results of metagenomic data analysis underscore the importance of the high abundance of Akkermansia and the butyrate biosynthesis pathway in the rejuvenated mouse group. Furthermore, oral administration of Akkermansia sufficiently ameliorated the senescence-related phenotype in the intestinal systems in aged mice and extended the health span, as evidenced by the frailty index and restoration of muscle atrophy. CONCLUSIONS: In conclusion, the changes in key microbial communities and their functions during ageing and three rejuvenation procedures, and the increase in the healthy lifespan of aged mice by oral administration of Akkermansia. Our results provide a rationale for developing therapeutic strategies to achieve healthy active ageing. Video abstract.


Assuntos
Microbioma Gastrointestinal , Envelhecimento Saudável , Microbiota , Envelhecimento , Animais , Microbioma Gastrointestinal/genética , Camundongos , Rejuvenescimento
18.
Int J Mol Sci ; 22(22)2021 Nov 09.
Artigo em Inglês | MEDLINE | ID: mdl-34830003

RESUMO

Cancer immunotherapy is becoming more important in the clinical setting, especially for cancers resistant to conventional chemotherapy, including targeted therapy. Chimeric antigen receptor (CAR)-T cell therapy, which uses patient's autologous T cells, combined with engineered T cell receptors, has shown remarkable results, with five US Food and Drug Administration (FDA) approvals to date. CAR-T cells have been very effective in hematologic malignancies, such as diffuse large B cell lymphoma (DLBCL), B cell acute lymphoblastic leukemia (B-ALL), and multiple myeloma (MM); however, its effectiveness in treating solid tumors has not been evaluated clearly. Therefore, many studies and clinical investigations are emerging to improve the CAR-T cell efficacy in solid tumors. The novel therapeutic approaches include modifying CARs in multiple ways or developing a combination therapy with immune checkpoint inhibitors and chemotherapies. In this review, we focus on the challenges and recent advancements in CAR-T cell therapy for solid tumors.


Assuntos
Imunoterapia Adotiva/tendências , Imunoterapia/tendências , Receptores de Antígenos de Linfócitos T/uso terapêutico , Linfócitos T/imunologia , Humanos , Linfoma Difuso de Grandes Células B/imunologia , Linfoma Difuso de Grandes Células B/terapia , Mieloma Múltiplo/imunologia , Mieloma Múltiplo/terapia , Leucemia-Linfoma Linfoblástico de Células Precursoras/imunologia , Leucemia-Linfoma Linfoblástico de Células Precursoras/terapia , Receptores de Antígenos de Linfócitos T/imunologia
19.
Oncol Rep ; 45(4)2021 04.
Artigo em Inglês | MEDLINE | ID: mdl-33655336

RESUMO

Radiation therapy is an effective treatment against various types of cancer, but some radiation­resistant cancer cells remain a major therapeutic obstacle; thus, understanding radiation resistance mechanisms is essential for cancer treatment. In this study, we established radiation­resistant colon cancer cell lines and examined the radiation­induced genetic changes associated with radiation resistance. Using RNA­sequencing analysis, collapsin response mediator protein 4 (CRMP4) was identified as the candidate gene associated with radiation sensitivity. When cells were exposed to radiation, intracellular Ca2+ influx, collapse of mitochondrial membrane potential, and cytochrome c release into the cytosol were increased, followed by apoptosis induction. Radiation treatment­ or Ca2+ ionophore A23187­induced apoptosis was significantly inhibited in CRMP4­deficient cells, including radiation­resistant or CRMP4­shRNA cell lines. Furthermore, treatment of CRMP4­deficient cells with low levels (<5 µM) of BAPTA­AM, a Ca2+ chelator, resulted in radiation resistance. Conversely, Ca2+ deficiency induced by a high BAPTA­AM concentration (>10 µM) resulted in higher cell death in the CRMP4­depleted cells compared to CRMP4­expressing control cells. Our results suggest that CRMP4 plays an important role in Ca2+­mediated cell death pathways under radiation exposure and that CRMP4 may be a therapeutical target for colon cancer treatment.


Assuntos
Cálcio/metabolismo , Neoplasias do Colo/metabolismo , Neoplasias do Colo/radioterapia , Proteínas Musculares/metabolismo , Morte Celular/efeitos da radiação , Linhagem Celular Tumoral , Neoplasias do Colo/genética , Neoplasias do Colo/patologia , Humanos , Proteínas Musculares/efeitos da radiação , Tolerância a Radiação , Análise de Sequência de RNA , Transdução de Sinais/efeitos da radiação
20.
Int J Mol Sci ; 21(24)2020 Dec 14.
Artigo em Inglês | MEDLINE | ID: mdl-33327533

RESUMO

The function of natural killer (NK) cell-derived interferon-γ (IFN-γ) expands to remove pathogens by increasing the ability of innate immune cells. Here, we identified the critical role of thioredoxin-interacting protein (TXNIP) in the production of IFN-γ in NK cells during bacterial infection. TXNIP inhibited the production of IFN-γ and the activation of transforming growth factor ß-activated kinase 1 (TAK1) activity in primary mouse and human NK cells. TXNIP directly interacted with TAK1 and inhibited TAK1 activity by interfering with the complex formation between TAK1 and TAK1 binding protein 1 (TAB1). Txnip-/- (KO) NK cells enhanced the activation of macrophages by inducing IFN-γ production during Pam3CSK4 stimulation or Staphylococcus aureus (S. aureus) infection and contributed to expedite the bacterial clearance. Our findings suggest that NK cell-derived IFN-γ is critical for host defense and that TXNIP plays an important role as an inhibitor of NK cell-mediated macrophage activation by inhibiting the production of IFN-γ during bacterial infection.


Assuntos
Proteínas de Transporte/metabolismo , Interferon gama/metabolismo , Células Matadoras Naturais/metabolismo , Tiorredoxinas/metabolismo , Animais , Proteínas de Transporte/genética , Ensaio de Imunoadsorção Enzimática , Imunidade Inata/efeitos dos fármacos , Imunidade Inata/genética , Células Matadoras Naturais/imunologia , Lipopeptídeos/farmacologia , Camundongos , Camundongos Knockout , Infecções Estafilocócicas/genética , Infecções Estafilocócicas/imunologia , Infecções Estafilocócicas/metabolismo , Staphylococcus aureus/patogenicidade , Tiorredoxinas/genética , Receptores Toll-Like/genética , Receptores Toll-Like/metabolismo , Fator de Transcrição AP-1/genética , Fator de Transcrição AP-1/metabolismo
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA