Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 187
Filtrar
1.
Arch Oral Biol ; 169: 106112, 2024 Oct 17.
Artigo em Inglês | MEDLINE | ID: mdl-39437662

RESUMO

OBJECTIVES: As dental pulp therapy evolves towards regenerative approaches, biomolecules such as icariin, derived from Epimedium flowers, are being evaluated for their therapeutic potential. This study investigates icariin's effectiveness in promoting odontogenic differentiation in human dental pulp stem cells (hDPSCs) in vitro and as a pulp-capping agent in vivo. DESIGN: The study explored the effects of icariin on hDPSCs at concentrations of 10, 20, and 40 µM. Cell viability and migration assays were conducted to evaluate cytotoxicity and chemotaxis. Odontogenic differentiation was assessed using alkaline phosphatase staining and alizarin red S (ARS) staining, complemented by real-time PCR and Western blot analyses of key markers such as RUNX family transcription factor 2 (RUNX2), collagen type I alpha 1 chain (COL1A1), alkaline phosphatase (ALPL), and dentin sialophosphoprotein (DSPP). Additionally, the in vivo effects of icariin were tested in a rat maxillary molar model, where icariin-treated collagen sponges were used for direct pulp capping to evaluate its potential to induce reparative dentin formation. RESULTS: Icariin showed no cytotoxic effects on hDPSCs at any tested concentration, enhanced migratory activity in a dose-dependent manner, and significantly increased alkaline phosphatase activity and calcium deposition. Gene and protein expression analyses revealed a dose-dependent increase in odontogenic differentiation markers in icariin-treated hDPSCs. In vivo, icariin effectively promoted reparative dentin formation in exposed rat pulp. CONCLUSIONS: Icariin enhances odontogenic differentiation of hDPSCs and has promising potential as a pulp-capping agent for vital pulp therapy.

2.
Anim Cells Syst (Seoul) ; 28(1): 353-366, 2024.
Artigo em Inglês | MEDLINE | ID: mdl-39040684

RESUMO

Taste buds, the neuroepithelial organs responsible for the detection of gustatory stimuli in the oral cavity, arise from stem/progenitor cells among nearby basal keratinocytes. Using genetic lineage tracing, Lgr5 and Lgr6 were suggested as the specific markers for the stem/progenitor cells of taste buds, but recent evidence implied that taste buds may arise even in the absence of these markers. Thus, we wanted to verify the genetic lineage tracing of lingual Lgr5- and Lgr6-expressing cells. Unexpectedly, we found that antibody staining revealed more diverse Lgr5-expressing cells inside and outside the taste buds of circumvallate papillae than was previously suggested. We also found that, while tamoxifen-induced genetic recombination occurred only in cells expressing the Lgr5 reporter GFP, we did not see any increase in the number of recombined daughter cells induced by consecutive injections of tamoxifen. Similarly, we found that cells expressing Lgr6, another stem/progenitor cell marker candidate and an analog of Lgr5, also do not generate recombined clones. In contrast, Lgr5-expressing cells in fungiform papillae can transform into Lgr5-negative progeny. Together, our data indicate that lingual Lgr5- and Lgr6-expressing cells exhibit diversity in their capacity to transform into Lgr5- and Lgr6-negative cells, depending on their location. Our results complement previous findings that did not distinguish this diversity.

3.
Exp Mol Med ; 56(7): 1606-1619, 2024 Jul.
Artigo em Inglês | MEDLINE | ID: mdl-38945953

RESUMO

The asymmetric division of stem cells permits the maintenance of the cell population and differentiation for harmonious progress. Developing mouse incisors allows inspection of the role of the stem cell niche to provide specific insights into essential developmental phases. Microtubule-associated serine/threonine kinase family member 4 (Mast4) knockout (KO) mice showed abnormal incisor development with low hardness, as the size of the apical bud was decreased and preameloblasts were shifted to the apical side, resulting in amelogenesis imperfecta. In addition, Mast4 KO incisors showed abnormal enamel maturation, and stem cell maintenance was inhibited as amelogenesis was accelerated with Wnt signal downregulation. Distal-Less Homeobox 3 (DLX3), a critical factor in tooth amelogenesis, is considered to be responsible for the development of amelogenesis imperfecta in humans. MAST4 directly binds to DLX3 and induces phosphorylation at three residues within the nuclear localization site (NLS) that promotes the nuclear translocation of DLX3. MAST4-mediated phosphorylation of DLX3 ultimately controls the transcription of DLX3 target genes, which are carbonic anhydrase and ion transporter genes involved in the pH regulation process during ameloblast maturation. Taken together, our data reveal a novel role for MAST4 as a critical regulator of the entire amelogenesis process through its control of Wnt signaling and DLX3 transcriptional activity.


Assuntos
Amelogênese , Proteínas de Homeodomínio , Camundongos Knockout , Células-Tronco , Fatores de Transcrição , Animais , Humanos , Camundongos , Amelogênese/genética , Diferenciação Celular/genética , Epitélio/metabolismo , Proteínas de Homeodomínio/metabolismo , Proteínas de Homeodomínio/genética , Fosforilação , Proteínas Serina-Treonina Quinases/metabolismo , Proteínas Serina-Treonina Quinases/genética , Células-Tronco/metabolismo , Células-Tronco/citologia , Fatores de Transcrição/metabolismo , Fatores de Transcrição/genética , Via de Sinalização Wnt
4.
J Oral Biosci ; 66(1): 249-252, 2024 Mar.
Artigo em Inglês | MEDLINE | ID: mdl-38220089

RESUMO

This study aimed to achieve a better understanding of taste receptor cell development relative to endothelin receptor B (ETB) in circumvallate papillae (CVP). ETB localization was assessed by immunohistochemistry during tongue development of the mouse. Co-localization of ETB with taste receptor type III cell marker, Synaptosomal-Associated Protein 25 kDa (SNAP25), was evident in both the developing and adult CVP. ETB was strongly localized in the stromal core region. As development progressed, ETB became localized in the CVP mesenchyme and partially in the epithelium. ETB and SNAP25 co-localization indicates that ETB may regulate innervation from the CVP mesenchyme to taste buds.


Assuntos
Fenômenos Fisiológicos do Sistema Nervoso , Papilas Gustativas , Animais , Camundongos , Epitélio , Imuno-Histoquímica , Papilas Gustativas/metabolismo
5.
Small ; 20(24): e2306738, 2024 Jun.
Artigo em Inglês | MEDLINE | ID: mdl-38161257

RESUMO

Adoptive immunotherapy utilizing natural killer (NK) cells has demonstrated remarkable efficacy in treating hematologic malignancies. However, its clinical intervention for solid tumors is hindered by the limited expression of tumor-specific antigens. Herein, lipid-PEG conjugated hyaluronic acid (HA) materials (HA-PEG-Lipid) for the simple ex-vivo surface coating of NK cells is developed for 1) lipid-mediated cellular membrane anchoring via hydrophobic interaction and thereby 2) sufficient presentation of the CD44 ligand (i.e., HA) onto NK cells for cancer targeting, without the need for genetic manipulation. Membrane-engineered NK cells can selectively recognize CD44-overexpressing cancer cells through HA-CD44 affinity and subsequently induce in situ activation of NK cells for cancer elimination. Therefore, the surface-engineered NK cells using HA-PEG-Lipid (HANK cells) establish an immune synapse with CD44-overexpressing MIA PaCa-2 pancreatic cancer cells, triggering the "recognition-activation" mechanism, and ultimately eliminating cancer cells. Moreover, in mouse xenograft tumor models, administrated HANK cells demonstrate significant infiltration into solid tumors, resulting in tumor apoptosis/necrosis and effective suppression of tumor progression and metastasis, as compared to NK cells and gemcitabine. Taken together, the HA-PEG-Lipid biomaterials expedite the treatment of solid tumors by facilitating a sequential recognition-activation mechanism of surface-engineered HANK cells, suggesting a promising approach for NK cell-mediated immunotherapy.


Assuntos
Receptores de Hialuronatos , Ácido Hialurônico , Imunoterapia , Células Matadoras Naturais , Células Matadoras Naturais/imunologia , Receptores de Hialuronatos/metabolismo , Animais , Humanos , Imunoterapia/métodos , Ácido Hialurônico/química , Linhagem Celular Tumoral , Ligantes , Camundongos , Polietilenoglicóis/química , Neoplasias/terapia , Neoplasias/imunologia
6.
Int J Oral Sci ; 15(1): 55, 2023 Dec 07.
Artigo em Inglês | MEDLINE | ID: mdl-38062012

RESUMO

Ameloblasts are specialized cells derived from the dental epithelium that produce enamel, a hierarchically structured tissue comprised of highly elongated hydroxylapatite (OHAp) crystallites. The unique function of the epithelial cells synthesizing crystallites and assembling them in a mechanically robust structure is not fully elucidated yet, partly due to limitations with in vitro experimental models. Herein, we demonstrate the ability to generate mineralizing dental epithelial organoids (DEOs) from adult dental epithelial stem cells (aDESCs) isolated from mouse incisor tissues. DEOs expressed ameloblast markers, could be maintained for more than five months (11 passages) in vitro in media containing modulators of Wnt, Egf, Bmp, Fgf and Notch signaling pathways, and were amenable to cryostorage. When transplanted underneath murine kidney capsules, organoids produced OHAp crystallites similar in composition, size, and shape to mineralized dental tissues, including some enamel-like elongated crystals. DEOs are thus a powerful in vitro model to study mineralization process by dental epithelium, which can pave the way to understanding amelogenesis and developing regenerative therapy of enamel.


Assuntos
Esmalte Dentário , Durapatita , Camundongos , Animais , Durapatita/farmacologia , Durapatita/análise , Durapatita/metabolismo , Esmalte Dentário/metabolismo , Ameloblastos/metabolismo , Amelogênese , Células-Tronco , Organoides
7.
Sci Adv ; 9(47): eadi8454, 2023 11 24.
Artigo em Inglês | MEDLINE | ID: mdl-38000027

RESUMO

Tissue regeneration after injury involves the dedifferentiation of somatic cells, a natural adaptive reprogramming that leads to the emergence of injury-responsive cells with fetal-like characteristics. However, there is no direct evidence that adaptive reprogramming involves a shared molecular mechanism with direct cellular reprogramming. Here, we induced dedifferentiation of intestinal epithelial cells using OSKM (Oct4, Sox2, Klf4, and c-Myc) in vivo. The OSKM-induced forced dedifferentiation showed similar molecular features of intestinal regeneration, including a transition from homeostatic cell types to injury-responsive-like cell types. These injury-responsive-like cells, sharing gene signatures of revival stem cells and atrophy-induced villus epithelial cells, actively assisted tissue regeneration following damage. In contrast to normal intestinal regeneration involving Ptgs2 induction, the OSKM promotes autonomous production of prostaglandin E2 via epithelial Ptgs1 expression. These results indicate prostaglandin synthesis is a common mechanism for intestinal regeneration but involves a different enzyme when partial reprogramming is applied to the intestinal epithelium.


Assuntos
Reprogramação Celular , Células-Tronco Pluripotentes Induzidas , Reprogramação Celular/genética , Células-Tronco Pluripotentes Induzidas/metabolismo
8.
Sci Rep ; 13(1): 18948, 2023 11 02.
Artigo em Inglês | MEDLINE | ID: mdl-37919340

RESUMO

The present study used microdissection, histology, and microcomputed tomography (micro-CT) with the aims of determining the prevalence and patterns of the depressor septi nasi (DSN) and orbicularis oris (OOr) muscles attached to the footplate of the medial crus (fMC) of the major alar cartilage, focusing on their crossing fibers. The DSN and OOr attached to the fMC of the major alar cartilage were investigated in 76 samples from 38 embalmed Korean adult cadavers (20 males, 18 females; mean age 70 years). The DSN, OOr, or both were attached to the fMC. When the DSN ran unilaterally or was absent, some OOr fibers ascended to attach to the fMC instead of the DSN in 20.6% of the samples. Crossing fibers of the DSN or OOr attached to the fMC were found in 82.4% of the samples. Bilateral and unilateral crossing fibers were found in 32.4% and 50.0%, respectively, and no crossing fibers were found in 17.6%. The DSN and OOr that attached to the fMC could be categorized into six types according to presence of the DSN and the crossing patterns of the DSN and OOr. Anatomical findings of the DSN and OOr that attached to the fMC were confirmed in histology and micro-CT images. These findings offer insights on anatomical mechanisms that may underlie the dynamic pulling forces generated by muscles that attach to the fMCs and on evolutionary variation observed in human facial expressions. They can also provide useful information for guiding rhinoplasty of the nasal tip.


Assuntos
Nariz , Rinoplastia , Masculino , Adulto , Feminino , Humanos , Idoso , Microtomografia por Raio-X , Nariz/diagnóstico por imagem , Nariz/cirurgia , Rinoplastia/métodos , Músculos Faciais/fisiologia , Cartilagens Nasais/cirurgia
9.
Int Endod J ; 56(12): 1550-1558, 2023 Dec.
Artigo em Inglês | MEDLINE | ID: mdl-37787769

RESUMO

AIM: Limiting the incidence of resorption associated with delayed replantation of avulsed teeth is critical for long-term tooth survival. In this study, we assessed whether icariin, a natural product with anti-osteoclastic properties, could reduce root resorption in a rat model of tooth replantation. METHODOLOGY: Cytocompatibility of icariin (10, 20, 40 and 80 µM) was evaluated by CCK-8 proliferation assay in vitro, and an osteoclastogenesis assay was performed to evaluate the effect of icariin on the differentiation of rat bone marrow macrophages and human peripheral blood monocytes into tartrate-resistant acid phosphatase-stained (TRAP+ ) multinucleated giant cells (MNGCs). Differentiation of human periodontal ligament stem cells (hPDLSCs) treated with icariin (10 µM) was also evaluated at 5, 10 and 21 days of osteogenic induction. The first maxillary molars of five-week-old male Sprague-Dawley rats were extracted, denuded of PDL, then treated either with neutralized collagen solution (Carrier control) or icariin in collagen (3 µg/µL) before replantation into their sockets. The animals were euthanized 2 weeks post-surgery for micro-computed tomography (micro-CT) imaging and histological analyses. RESULTS: Icariin was cytocompatible and significantly reduced the differentiation of TRAP+ MNGCs in a dose-dependent manner compared to the control. Moreover, icariin enhanced alkaline phosphatase activity, expression of osteogenic marker genes and proteins, and calcium deposition in hPDLSCs. Micro-CT imaging of the replanted samples demonstrated a significantly higher volume of remaining roots in the icariin-treated group than in the control group. Histological analysis revealed a marked number of resorptive lacunae with TRAP activity in the control group, whereas icariin-treated samples showed signs of functional healing and reduced osteoclastic activity. CONCLUSIONS: Icariin was biocompatible and demonstrated potent anti-osteoclastic and pro-osteogenic properties that reduced resorption and promoted functional healing of denuded roots in a rat maxillary first molar model of replantation. These findings indicate that root surface treatment with icariin may be a clinically relevant and practical method for improving the retention and survival of teeth with compromised PDL after delayed replantation following traumatic avulsion.


Assuntos
Reabsorção da Raiz , Avulsão Dentária , Humanos , Ratos , Masculino , Animais , Ratos Sprague-Dawley , Microtomografia por Raio-X , Reabsorção da Raiz/prevenção & controle , Ligamento Periodontal , Colágeno , Reimplante Dentário/métodos
10.
J Endod ; 49(12): 1652-1659, 2023 Dec.
Artigo em Inglês | MEDLINE | ID: mdl-37657731

RESUMO

INTRODUCTION: The regeneration of pulp tissue is crucial for true regenerative endodontic treatment, which requires a reduction in osteogenic differentiation. Garcinol, a histone acetyltransferase inhibitor, is a natural regulator that is known to suppress the osteogenic differentiation of dental pulp stem cells. In this study, the inhibitory effect of garcinol on the osteogenic differentiation of human dental pulp stem cells (hDPSCs) was evaluated using three-dimensional culture under in vitro and in vivo conditions. METHODS: hDPSCs were obtained from caries-free third molars and cultured with 10 µM garcinol for 7 days in an ultra-low attachment plate. The cell stemness and expression of osteogenic differentiation-related genes were analyzed using reverse transcription-polymerase chain reaction and single-cell analysis. A transplantation experiment was performed in mice to investigate whether garcinol-treated hDPSCs showed restrained osteogenic differentiation. RESULTS: hDPSCs cultured in the U-shaped ultra-low attachment plate showed the highest expression of stemness-related genes. Garcinol-treated hDPSCs demonstrated downregulation of osteogenic differentiation, with lower expression of bone sialoprotein, which is related to bone formation, and higher expression of dentin sialophosphoprotein, which is related to dentin formation. However, the garcinol-treated hDPSCs did not show any alterations in their stemness. Consistent results were observed in the transplantation experiment in mice. CONCLUSIONS: Garcinol reduced the osteogenic differentiation of hDPSCs, which can contribute to true regenerative endodontic treatment.


Assuntos
Polpa Dentária , Osteogênese , Humanos , Animais , Camundongos , Células-Tronco/fisiologia , Diferenciação Celular , Células Cultivadas , Proliferação de Células
11.
J Adv Res ; 2023 Aug 22.
Artigo em Inglês | MEDLINE | ID: mdl-37619933

RESUMO

INTRODUCTION: Most mineralized tissues in our body are present in bones and teeth. Human induced pluripotent stem cells (hiPSCs) are promising candidates for cell therapy to help regenerate bone defects and teeth loss. The extracellular matrix (ECM) is a non-cellular structure secreted by cells. Studies on the dynamic microenvironment of ECM are necessary for stem cell-based therapies. OBJECTIVES: We aim to optimize an effective protocol for hiPSC differentiation into dental cells without utilizing animal-derived factors or cell feeders that can be applied to humans and to mineralize differentiated dental cells into hard tissues. METHODS: For the differentiation of both dental epithelial cells (DECs) and dental mesenchymal cells (DMCs) from hiPSCs, an embryoid body (EB) was formed from hiPSCs. hiPSC were differentiated into neural crest cells with an induction medium utilized in our previous study, and hiPSC-derived DECs were differentiated with a BMP-modulated customized medium. hiPSC-dental cells were then characterized, analyzed, and validated with transcriptomic analysis, western blotting, and RT-qPCR. To form mineralized tissues, hiPSC-derived DECs were recombined with hiPSC-derived DMCs encapsulated in various biomaterials, including gelatin methacryloyl (GelMA), collagen, and agar matrix. RESULTS: These hiPSC-derived dental cells are highly osteogenic and chondro-osteogenic in photocrosslinkable GelMA hydrogel and collagen type I microenvironments. Furthermore, hiPSC-derived dental cells in agar gel matrix induced the formation of a bioengineered tooth. CONCLUSION: Our study provides an approach for applying hiPSCs for hard tissue regeneration, including tooth and bone. This study has immense potential to provide a novel technology for bioengineering organs for various regenerative therapies.

12.
Front Cell Dev Biol ; 11: 1164811, 2023.
Artigo em Inglês | MEDLINE | ID: mdl-37457296

RESUMO

Tooth formation relies on two types of dental cell populations, namely, the dental epithelium and dental mesenchyme, and the interactions between these cell populations are important during tooth development. Although human-induced pluripotent stem cells (hiPSCs) can differentiate into dental epithelial and mesenchymal cells, organoid research on tooth development has not been established yet. This study focused on the hiPSC-derived human ameloblast organoid (hAO) using a three-dimensional (3D) culture system. hAOs had similar properties to ameloblasts, forming enamel in response to calcium and mineralization by interaction with the dental mesenchyme. hAOs simultaneously had osteogenic and odontogenic differentiation potential. Furthermore, hAOs demonstrated tooth regenerative potential upon interaction with the mouse dental mesenchyme. Our findings provide new insights into a suitable hiPSC-derived dental source and demonstrate that hAOs can be beneficial not only for tooth regeneration but also for the study of various dental diseases for which treatment has not been developed yet.

13.
Cell Biosci ; 13(1): 108, 2023 Jun 12.
Artigo em Inglês | MEDLINE | ID: mdl-37308968

RESUMO

BACKGROUND: Various renal abnormalities, including hydronephrosis, polycystic kidney disease, and hydroureter, have been reported, and these abnormalities are present in DiGeorge syndrome, renal dysplasia, and acute kidney failure. Previous studies have shown that various genes are associated with renal abnormalities. However, the major target genes of nonobstructive hydronephrosis have not yet been elucidated. RESULTS: We examined neuroblast differentiation-associated protein Ahnak localization and analyzed morphogenesis in developing kidney and ureter. To investigated function of Ahnak, RNA-sequencing and calcium imaging were performed in wild type and Ahnak knockout (KO) mice. Ahnak localization was confirmed in the developing mouse kidneys and ureter. An imbalance of calcium homeostasis and hydronephrosis, which involves an expanded renal pelvis and hydroureter, was observed in Ahnak KO mice. Gene Ontology enrichment analysis on RNA-seq results indicated that 'Channel Activity', 'Passive Transmembrane Transporter Activity' and 'Cellular Calcium Ion Homeostasis' were downregulated in Ahnak KO kidney. 'Muscle Tissue Development', 'Muscle Contraction', and 'Cellular Calcium Ion Homeostasis' were downregulated in Ahnak KO ureter. Moreover, peristaltic movement of smooth muscle in the ureter was reduced in Ahnak KO mice. CONCLUSIONS: Abnormal calcium homeostasis causes renal disease and is regulated by calcium channels. In this study, we focused on Ahnak, which regulates calcium homeostasis in several organs. Our results indicate that Ahnak plays a pivotal role in kidney and ureter development, and in maintaining the function of the urinary system.

14.
Cell Prolif ; 56(4): e13390, 2023 Apr.
Artigo em Inglês | MEDLINE | ID: mdl-36592615

RESUMO

Spermatogonial stem cell (SSC) self-renewal is regulated by reciprocal interactions between Sertoli cells and SSCs in the testis. In a previous study, microtubule-associated serine/threonine kinase 4 (MAST4) has been studied in Sertoli cells as a regulator of SSC self-renewal. The present study focused on the mechanism by which MAST4 in Sertoli cells transmits the signal and regulates SSCs, especially cell cycle regulation. The expression of PLZF, CDK2 and PLZF target genes was examined in WT and Mast4 KO testes by Immunohistochemistry, RT-qPCR and western blot. In addition, IdU and BrdU were injected into WT and Mast4 KO mice and cell cycle of SSCs was analysed. Finally, the testis tissues were cultured in vitro to examine the regulation of cell cycle by MAST4 pathway. Mast4 KO mice showed infertility with Sertoli cell-only syndrome and reduced sperm count. Furthermore, Mast4 deletion led to decreased PLZF expression and cell cycle progression in the testes. MAST4 also induced cyclin-dependent kinase 2 (CDK2) to phosphorylate PLZF and activated PLZF suppressed the transcriptional levels of genes related to cell cycle arrest, leading SSCs to remain stem cell state. MAST4 is essential for maintaining cell cycle in SSCs via the CDK2-PLZF interaction. These results demonstrate the pivotal role of MAST4 regulating cell cycle of SSCs and the significance of spermatogenesis.


Assuntos
Células-Tronco Germinativas Adultas , Proteínas Associadas aos Microtúbulos , Animais , Camundongos , Células-Tronco Germinativas Adultas/citologia , Células-Tronco Germinativas Adultas/fisiologia , Ciclo Celular/fisiologia , Proteínas Associadas aos Microtúbulos/fisiologia , Masculino
15.
Exp Mol Med ; 55(1): 171-182, 2023 01.
Artigo em Inglês | MEDLINE | ID: mdl-36631663

RESUMO

Taste receptor cells are taste bud epithelial cells that are dependent upon the innervating nerve for continuous renewal and are maintained by resident tissue stem/progenitor cells. Transection of the innervating nerve causes degeneration of taste buds and taste receptor cells. However, a subset of the taste receptor cells is maintained without nerve contact after glossopharyngeal nerve transection in the circumvallate papilla in adult mice. Here, we revealed that injury caused by glossopharyngeal nerve transection triggers the remaining differentiated K8-positive taste receptor cells to dedifferentiate and acquire transient progenitor cell-like states during regeneration. Dedifferentiated taste receptor cells proliferate, express progenitor cell markers (K14, Sox2, PCNA) and form organoids in vitro. These data indicate that differentiated taste receptor cells can enter the cell cycle, acquire stemness, and participate in taste bud regeneration. We propose that dedifferentiated taste receptor cells in combination with stem/progenitor cells enhance the regeneration of taste buds following nerve injury.


Assuntos
Traumatismos do Nervo Glossofaríngeo , Papilas Gustativas , Camundongos , Animais , Papilas Gustativas/metabolismo , Paladar , Células-Tronco , Células Epiteliais
16.
Int J Stem Cells ; 15(4): 415-421, 2022 Nov 30.
Artigo em Inglês | MEDLINE | ID: mdl-36310025

RESUMO

Cancer initiation and progression are profoundly along with the crosstalk between cancer cells and the surrounding stroma. Accumulating evidence has shown that the therapy targeting the extracellular matrix (ECM) would regress tumor growth and invasion in the most common carcinomas. However, it remains largely unexplored in several rare tumors like odontogenic tumors. Ameloblastoma (AM) is the representative odontogenic epithelial tumor in the jawbone, and it usually infiltrates into adjacent bone marrow and has unlimited growth capacity and a high potential for recurrence. This study aims to investigate the role of collagen-rich ECM during the invasion of AM. Transcriptomic analysis revealed that ECM- and epithelial-to-mesenchymal transition (EMT)-related genes were up-regulated in AM compared to ameloblastoma cell line, AM-1. Tumoroid forming analysis showed that Collagen-rich ECM is indispensable for AM progression, especially for aggressive growth patterns and collective invasion.

17.
Cell Biosci ; 12(1): 145, 2022 Sep 03.
Artigo em Inglês | MEDLINE | ID: mdl-36057617

RESUMO

BACKGROUND: Transcriptome analysis has been known as a functional tool for cancer research recently. Mounting evidence indicated that calcium signaling plays several key roles in cancer progression. Despite numerous studies examining calcium signaling in cancer, calcium signaling studies in ameloblastoma are limited. RESULTS: In the present study, comparative transcriptome profiling of two representative odontogenic lesions, ameloblastoma and odontogenic keratocyst, revealed that Cav1.2 (CACNA1C, an L-type voltage-gated calcium channel) is strongly enriched in ameloblastoma. It was confirmed that the Ca2+ influx in ameloblastoma cells is mainly mediated by Cav1.2 through L-type voltage-gated calcium channel agonist and blocking reagent treatment. Overexpression and knockdown of Cav1.2 showed that Cav1.2 is directly involved in the regulation of the nuclear translocation of nuclear factor of activated T cell 1 (NFATc1), which causes cell proliferation. Furthermore, a tumoroid study indicated that Cav1.2-dependent Ca2+ entry is also associated with the maintenance of stemness of ameloblastoma cells via the enhancement of Wnt/ß-catenin signaling activity. CONCLUSION: In conclusion, Cav1.2 regulates the NFATc1 nuclear translocation to enhance ameloblastoma cell proliferation. Furthermore, Cav1.2 dependent Ca2+ influx contributes to the Wnt/ß-catenin activity for the ameloblastoma cell stemness and tumorigenicity. Our fundamental findings could have a major impact in the fields of oral maxillofacial surgery, and genetic manipulation or pharmacological approaches to Cav1.2 can be considered as new therapeutic options.

18.
Nat Commun ; 13(1): 3960, 2022 07 08.
Artigo em Inglês | MEDLINE | ID: mdl-35803931

RESUMO

Mesenchymal stromal cells (MSCs) differentiation into different lineages is precisely controlled by signaling pathways. Given that protein kinases play a crucial role in signal transduction, here we show that Microtubule Associated Serine/Threonine Kinase Family Member 4 (Mast4) serves as an important mediator of TGF-ß and Wnt signal transduction in regulating chondro-osteogenic differentiation of MSCs. Suppression of Mast4 by TGF-ß1 led to increased Sox9 stability by blocking Mast4-induced Sox9 serine 494 phosphorylation and subsequent proteasomal degradation, ultimately enhancing chondrogenesis of MSCs. On the other hand, Mast4 protein, which stability was enhanced by Wnt-mediated inhibition of GSK-3ß and subsequent Smurf1 recruitment, promoted ß-catenin nuclear localization and Runx2 activity, increasing osteogenesis of MSCs. Consistently, Mast4-/- mice demonstrated excessive cartilage synthesis, while exhibiting osteoporotic phenotype. Interestingly, Mast4 depletion in MSCs facilitated cartilage formation and regeneration in vivo. Altogether, our findings uncover essential roles of Mast4 in determining the fate of MSC development into cartilage or bone.


Assuntos
Osso e Ossos , Cartilagem , Células-Tronco Mesenquimais , Proteínas Associadas aos Microtúbulos , Proteínas Serina-Treonina Quinases , Animais , Feminino , Camundongos , Osso e Ossos/citologia , Osso e Ossos/metabolismo , Cartilagem/citologia , Cartilagem/metabolismo , Diferenciação Celular/genética , Condrogênese/genética , Células-Tronco Mesenquimais/citologia , Células-Tronco Mesenquimais/metabolismo , Camundongos Endogâmicos C57BL , Camundongos Knockout , Proteínas Associadas aos Microtúbulos/genética , Osteogênese/genética , Proteínas Serina-Treonina Quinases/genética , Fator de Crescimento Transformador beta/metabolismo , Via de Sinalização Wnt
19.
Cell Prolif ; 55(11): e13305, 2022 Nov.
Artigo em Inglês | MEDLINE | ID: mdl-35794842

RESUMO

OBJECTIVES: Ameloblastoma (AM) has been known as a benign but locally invasive tumour with high recurrence rates. Invasive behaviour of the AM results in destruction of the adjacent jawbone and the non-detectable remnants during surgery, interrupting the complete elimination of cancer cells. METHODS: To explore novel targets for the tumour cell invasion, a transcriptomic analysis between AM and odontogenic keratocyst were performed through next-generation sequencing in detail. RESULTS: Enrichment of CACNA1C gene (encoding Cav1.2) in AM, a subunit of the L-type voltage-gated calcium channel (VGCC) was observed for the first time. The expression and channel activity of Cav1.2 was confirmed by immunostaining and calcium imaging in the patient samples or primary cells. Verapamil, L-type VGCC blocker revealed suppression of the Ca2+ -induced cell aggregation and collective invasion of AM cells in vitro. Furthermore, the effect of verapamil in suppressing AM invasion into the adjacent bone was confirmed through orthotopic xenograft model specifically. CONCLUSION: Taken together, Cav1.2 maybe considered to be a therapeutic candidate to decrease the collective migration and invasion of AM.


Assuntos
Ameloblastoma , Bloqueadores dos Canais de Cálcio , Canais de Cálcio Tipo L , Humanos , Ameloblastoma/tratamento farmacológico , Ameloblastoma/genética , Cálcio/metabolismo , Bloqueadores dos Canais de Cálcio/farmacologia , Canais de Cálcio Tipo L/genética , Canais de Cálcio Tipo L/metabolismo , Sinalização do Cálcio/fisiologia , Verapamil/farmacologia , Animais
20.
Histochem Cell Biol ; 158(6): 595-602, 2022 Dec.
Artigo em Inglês | MEDLINE | ID: mdl-35857110

RESUMO

Tumor progression is profoundly affected by crosstalk between cancer cells and their stroma. In the past decades, the development of bioinformatics and the establishment of organoid model systems have allowed extensive investigation of the relationship between tumor cells and the tumor microenvironment (TME). However, the interaction between tumor cells and the extracellular matrix (ECM) in odontogenic epithelial neoplasms and the ECM remodeling mechanism remain unclear. In the present study, transcriptomic comparison and histopathologic analysis revealed that TME-related genes were upregulated in ameloblastoma compared to in odontogenic keratocysts. Tumoroid analysis indicated that type I collagen is required for ameloblastoma progression. Furthermore, ameloblastoma shows the capacity to remodel the ECM independently of cancer-associated fibroblasts. In conclusion, ameloblastoma-mediated ECM remodeling contributes to the formation of an invasive collagen architecture during tumor progression.


Assuntos
Colágeno , Microambiente Tumoral
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA