Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 2 de 2
Filtrar
Mais filtros








Base de dados
Intervalo de ano de publicação
1.
Polymers (Basel) ; 14(18)2022 Sep 13.
Artigo em Inglês | MEDLINE | ID: mdl-36145966

RESUMO

Dielectric elastomer actuators (DEAs), a type of electroactive polymers (EAPs), are smart materials that are used in various fields such as artificial muscles and biomimetic robots. In this study, graphene nanoplatelets (GNPs), which are conductive carbon fillers, were added to a widely used DEA, namely, polydimethylsiloxane (PDMS), to improve its low actuated strain. Four grades of GNPs were used: H5, H25, M5, and M25 (here, the number following the letter indicates the average particle size of the GNPs in µm). The average layer thickness of the H grade is 13−14 nm and that of the M grade is 5−7 nm. PDMS composites were prepared by adding 0.5, 1, 2, and 3 wt% of each GNP, following which the mechanical properties, dielectric properties, and actuated strain of the composites were measured. The mechanical properties were found to increase as the particle size increased. Regarding the dielectric characteristics, it was found that the higher the aspect ratio of the filler, the easier the formation of a micro-capacitor network in the composite­this led to an increase in the dielectric constant. In addition, the higher amounts of GNPs in the composites also led to an increase in the dielectric constant. For the actuated strain analysis, the electromechanical sensitivity was calculated using the ratio of the dielectric constant to the Young's modulus, which is proportional to the strain. However, it was found that when the loss tangent was high, the performance of the actuated strain decreased owing to the conversion of electric energy into thermal energy and leakage current loss. As a result, the highest actuated strain was exhibited by the M25 composite, with an actuated strain value of 3.01% measured at a low electric field (<4 kV/mm). In conclusion, we proved that the GNP−PDMS composites with a thin layer and large particle size exhibited high deformation.

2.
Soft Matter ; 16(29): 6812-6818, 2020 Aug 07.
Artigo em Inglês | MEDLINE | ID: mdl-32632426

RESUMO

As highly integrated electronic devices and automotive parts are becoming used in high-power and load-bearing systems, thermal conductivity and mechanical damping properties have become critical factors. In this study, we applied two different fillers of aluminium nitride (AlN) and boron nitride (BN), having polygonal and platelet shapes, respectively, into ethylene-propylene-diene monomer (EPDM) rubber to ensure improved thermo-mechanical properties of EPDM composites. These two different shapes are considered advantageous in providing effective pathways of phonon transfer as well as facilitating sliding movement of packed particles. When the volume ratio of AlN : BN was 1 : 1, the thermal conductivity of the hybrid-filler system (EPDM/AlN/BN) increased in comparison to that of the single-filler system (EPDM/AlN) of 3.03 to 4.76 W m-1 K-1. The coefficient of thermal expansion (CTE) and thermal distortion parameter (TDP) substantially decreased from 59.3 ppm °C-1 and 17.5 m K-1 of EPDM/AlN, to 39.7 ppm °C-1 and 8.4 m K-1 of EPDM/AlN/BN, representing reductions of 33 and 52%, respectively. Moreover, the damping coefficient of EPDM/AlN/BN was greatly increased to 0.5 of at 50 °C, compared to 0.03 of neat EPDM. These excellent performances likely stem from the effective packing of AlN/BN hybrid fillers, which could induce facile energy transfer and effective energy dissipation by the sliding movement of the adjacent hybrid fillers in the EPDM matrix.

SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA