Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 6 de 6
Filtrar
Mais filtros








Base de dados
Intervalo de ano de publicação
1.
Int J Mol Sci ; 23(18)2022 Sep 19.
Artigo em Inglês | MEDLINE | ID: mdl-36142888

RESUMO

Quantum dots (QDs) have outstanding optical properties such as strong fluorescence, excellent photostability, broad absorption spectra, and narrow emission bands, which make them useful for bioimaging. However, cadmium (Cd)-based QDs, which have been widely studied, have potential toxicity problems. Cd-free QDs have also been studied, but their weak photoluminescence (PL) intensity makes their practical use in bioimaging challenging. In this study, Cd-free QD nanoprobes for bioimaging were fabricated by densely embedding multiple indium phosphide/zinc sulfide (InP/ZnS) QDs onto silica templates and coating them with a silica shell. The fabricated silica-coated InP/ZnS QD-embedded silica nanoparticles (SiO2@InP QDs@SiO2 NPs) exhibited hydrophilic properties because of the surface silica shell. The quantum yield (QY), maximum emission peak wavelength, and full-width half-maximum (FWHM) of the final fabricated SiO2@InP QDs@SiO2 NPs were 6.61%, 527.01 nm, and 44.62 nm, respectively. Moreover, the brightness of the particles could be easily controlled by adjusting the amount of InP/ZnS QDs in the SiO2@InP QDs@SiO2 NPs. When SiO2@InP QDs@SiO2 NPs were administered to tumor syngeneic mice, the fluorescence signal was prominently detected in the tumor because of the preferential distribution of the SiO2@InP QDs@SiO2 NPs, demonstrating their applicability in bioimaging with NPs. Thus, SiO2@InP QDs@SiO2 NPs have the potential to successfully replace Cd-based QDs as highly bright and biocompatible fluorescent nanoprobes.


Assuntos
Nanopartículas , Neoplasias , Pontos Quânticos , Animais , Cádmio , Índio , Camundongos , Fosfinas , Dióxido de Silício , Sulfetos , Compostos de Zinco
2.
J Nanobiotechnology ; 20(1): 22, 2022 Jan 06.
Artigo em Inglês | MEDLINE | ID: mdl-34991619

RESUMO

BACKGROUND: Quantum dots (QDs) have been used as fluorophores in various imaging fields owing to their strong fluorescent intensity, high quantum yield (QY), and narrow emission bandwidth. However, the application of QDs to bio-imaging is limited because the QY of QDs decreases substantially during the surface modification step for bio-application. RESULTS: In this study, we fabricated alloy-typed core/shell CdSeZnS/ZnS quantum dots (alloy QDs) that showed higher quantum yield and stability during the surface modification for hydrophilization compared with conventional CdSe/CdS/ZnS multilayer quantum dots (MQDs). The structure of the alloy QDs was confirmed using time-of-flight medium-energy ion scattering spectroscopy. The alloy QDs exhibited strong fluorescence and a high QY of 98.0%. After hydrophilic surface modification, the alloy QDs exhibited a QY of 84.7%, which is 1.5 times higher than that of MQDs. The QY was 77.8% after the alloy QDs were conjugated with folic acid (FA). Alloy QDs and MQDs, after conjugation with FA, were successfully used for targeting human KB cells. The alloy QDs exhibited a stronger fluorescence signal than MQD; these signals were retained in the popliteal lymph node area for 24 h. CONCLUSION: The alloy QDs maintained a higher QY in hydrophilization for biological applications than MQDs. And also, alloy QDs showed the potential as nanoprobes for highly sensitive bioimaging analysis.


Assuntos
Ligas , Compostos de Cádmio/química , Sistemas de Liberação de Medicamentos/métodos , Pontos Quânticos , Sulfetos/química , Compostos de Zinco/química , Ligas/química , Ligas/farmacocinética , Animais , Linhagem Celular Tumoral , Ácido Fólico , Células HeLa , Humanos , Masculino , Camundongos , Camundongos Endogâmicos BALB C , Microscopia Eletrônica de Transmissão , Imagem Óptica , Pontos Quânticos/química , Pontos Quânticos/metabolismo , Compostos de Selênio/química , Propriedades de Superfície
3.
Nanomaterials (Basel) ; 11(3)2021 Mar 18.
Artigo em Inglês | MEDLINE | ID: mdl-33803623

RESUMO

Exosomes are attracting attention as new biomarkers for monitoring the diagnosis and prognosis of certain diseases. Colorimetric-based lateral-flow assays have been previously used to detect exosomes, but these have the disadvantage of a high limit of detection. Here, we introduce a new technique to improve exosome detection. In our approach, highly bright multi-quantum dots embedded in silica-encapsulated nanoparticles (M-QD-SNs), which have uniform size and are brighter than single quantum dots, were applied to the lateral flow immunoassay method to sensitively detect exosomes. Anti-CD63 antibodies were introduced on the surface of the M-QD-SNs, and a lateral flow immunoassay with the M-QD-SNs was conducted to detect human foreskin fibroblast (HFF) exosomes. Exosome samples included a wide range of concentrations from 100 to 1000 exosomes/µL, and the detection limit of our newly designed system was 117.94 exosome/µL, which was 11 times lower than the previously reported limits. Additionally, exosomes were selectively detected relative to the negative controls, liposomes, and newborn calf serum, confirming that this method prevented non-specific binding. Thus, our study demonstrates that highly sensitive and quantitative exosome detection can be conducted quickly and accurately by using lateral immunochromatographic analysis with M-QD-SNs.

4.
Biochem Biophys Res Commun ; 349(2): 556-63, 2006 Oct 20.
Artigo em Inglês | MEDLINE | ID: mdl-16945335

RESUMO

Carcinoembryonic antigen (CEA) has been shown to be involved in a variety of neoplasia process, such as tumor cell adhesion, metastasis, blocking of cellular immune mechanisms, and anti-apoptosis function. Therefore, CEA has been a potential target for anti-cancer therapy. In this study, we developed a specific ribozyme that can target CEA RNA and then reprogram the RNA with new transcripts, resulting in triggering of transgene activity selectively in cancer cells that express the RNA. The ribozyme-mediated induction of the transgene expression was caused via a highly accurate and specific RNA replacement through trans-splicing reaction with the targeted residue in the CEA-expressing cells. Simultaneously with the specific RNA replacement, the ribozyme efficiently reduced expression level of the targeted CEA RNA in the cells. Importantly, the ribozyme could selectively deliver activity of suicide gene, herpes simplex virus thymidine kinase gene, into cancer cells expressing the CEA RNA and thereby specifically retarded the survival of these cells with ganciclovir treatment. These suggest that the CEA RNA-targeting trans-splicing ribozyme could be a powerful genetic agent for specific cancer gene therapy.


Assuntos
Processamento Alternativo , Antígeno Carcinoembrionário/biossíntese , Neoplasias/terapia , RNA Catalítico/química , Adesão Celular , Linhagem Celular Tumoral , Terapia Genética , Humanos , Íntrons , Metástase Neoplásica , Neoplasias/genética , RNA/química , RNA Catalítico/metabolismo , Reação em Cadeia da Polimerase Via Transcriptase Reversa , Sensibilidade e Especificidade , Transgenes
5.
Mol Ther ; 12(5): 824-34, 2005 Nov.
Artigo em Inglês | MEDLINE | ID: mdl-16040278

RESUMO

In this study, we describe a novel approach to human cancer therapy that is based upon trans-splicing ribozyme-mediated replacement of cancer-specific RNAs with new transcripts that exert therapeutic activities. We have developed a specific ribozyme that can reprogram human telomerase reverse transcriptase (hTERT) RNA to induce transgene activity selectively in cancer cells that express the RNA. The ribozyme-mediated triggering of the transgene expression was accomplished via a high-fidelity trans-splicing reaction with the targeted residue in the hTERT-expressing cells. The ribozyme also induced cytotoxic activity in various hTERT-expressing cancer cells, hence selectively retarding the growth of those cells. Efficient and specific cell regression was also detected with ganciclovir (GCV) treatment only in hTERT-positive cancer cells, which were established to express stably the specific ribozyme that contains the herpes simplex virus thymidine kinase (HSV-tk) gene. Tissue-specific expression of the ribozyme could further augment the target specificity of the ribozyme. Importantly, we observed efficient regression of tumors with GCV treatment in mice that had been inoculated subcutaneously with hTERT-positive cancer cells that stably expressed the specific ribozyme that contains HSV-tk. These results suggest that the hTERT RNA-targeting trans-splicing ribozyme could be a powerful agent for tumor-targeted specific gene therapy.


Assuntos
Proteínas de Ligação a DNA/genética , Terapia Genética , Vetores Genéticos , Neoplasias/terapia , RNA Catalítico/uso terapêutico , RNA Mensageiro/metabolismo , Telomerase/genética , Trans-Splicing , Citosina Desaminase , Marcação de Genes , Humanos , Neoplasias/genética , RNA Catalítico/genética , RNA Neoplásico , Timidina Quinase , Transcrição Gênica , Transfecção
6.
Biotechnol Lett ; 27(8): 567-74, 2005 Apr.
Artigo em Inglês | MEDLINE | ID: mdl-15973491

RESUMO

Current gene therapy protocols against cancer often have limited target specificity. Here, a novel tumor-specific targeted gene delivery procedure, which is based on Tetrahymena group I intron ribozyme, is presented. This ribozyme can target a cancer-specific transcript and then replace the RNA with new transcripts, resulting in induction of the transgene activity selectively in cancer cells that express the target RNA. The RNA replacement occurs by trans-splicing reaction with high fidelity with the target RNA. In addition, the ribozyme can specifically inhibit function of the targeted gene in the cells expressing the RNA. Moreover, the ribozyme can selectively deliver cytotoxin gene activity into cancer cells expressing the RNA and thereby specifically hampers the survival of these cells. These findings suggest that the trans-splicing ribozyme that targets the cancer-specific RNA could be a potential agent for specific tumor gene therapy.


Assuntos
Íntrons/genética , RNA Neoplásico/metabolismo , Tetrahymena/genética , Animais , Sequência de Bases , Linhagem Celular , Linhagem Celular Tumoral , Sobrevivência Celular/genética , DNA Antissenso/genética , Proteínas de Ligação a DNA/genética , Proteínas de Ligação a DNA/metabolismo , Regulação Neoplásica da Expressão Gênica , Marcação de Genes/métodos , Proteínas de Fluorescência Verde/genética , Proteínas de Fluorescência Verde/metabolismo , Células HT29 , Humanos , Plasmídeos/genética , RNA Catalítico/genética , RNA Catalítico/metabolismo , RNA Mensageiro/genética , RNA Mensageiro/metabolismo , RNA Neoplásico/genética , Proteínas Recombinantes de Fusão/genética , Proteínas Recombinantes de Fusão/metabolismo , Telomerase/genética , Telomerase/metabolismo , Transfecção
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA