Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 3 de 3
Filtrar
Mais filtros








Base de dados
Intervalo de ano de publicação
1.
Sci Rep ; 13(1): 22636, 2023 12 19.
Artigo em Inglês | MEDLINE | ID: mdl-38114606

RESUMO

Air pollution is an environmental risk factor linked to multiple human diseases including cardiovascular diseases (CVDs). While particulate matter (PM) emitted by diesel exhaust damages multiple organ systems, heart disease is one of the most severe pathologies affected by PM. However, the in vivo effects of diesel exhaust particles (DEP) on the heart and the molecular mechanisms of DEP-induced heart dysfunction have not been investigated. In the current study, we attempted to identify the proteomic signatures of heart fibrosis caused by diesel exhaust particles (DEP) in CVDs-prone apolipoprotein E knockout (ApoE-/-) mice model using tandem mass tag (TMT)-based quantitative proteomic analysis. DEP exposure induced mild heart fibrosis in ApoE-/- mice compared with severe heart fibrosis in ApoE-/- mice that were treated with CVDs-inducing peptide, angiotensin II. TMT-based quantitative proteomic analysis of heart tissues between PBS- and DEP-treated ApoE-/- mice revealed significant upregulation of proteins associated with platelet activation and TGFß-dependent pathways. Our data suggest that DEP exposure could induce heart fibrosis, potentially via platelet-related pathways and TGFß induction, causing cardiac fibrosis and dysfunction.


Assuntos
Doenças Cardiovasculares , Emissões de Veículos , Animais , Humanos , Camundongos , Apolipoproteínas E/genética , Doenças Cardiovasculares/etiologia , Fibrose , Material Particulado/toxicidade , Proteômica , Fator de Crescimento Transformador beta , Emissões de Veículos/toxicidade
2.
Sci Rep ; 12(1): 16492, 2022 10 03.
Artigo em Inglês | MEDLINE | ID: mdl-36192481

RESUMO

Diesel exhaust particles (DEP) are risk factors for endothelial cells (ECs) dysfunction. However, the mechanism by which DEP induce ECs apoptosis remains unclear. Here, we investigated how DEP induce death of human umbilical vein ECs (HUVECs), with a focus on the autophagy-mediated apoptotic pathway. DEP induced dose-dependent HUVECs death and exposure to the IC50 concentration of DEP (70 µg/ml) led to apoptosis. DEP phosphorylated Beclin-1 (Ser93) and increased protein levels of p62 and LC3BII and the number of LC3B puncta, indicating autophagy initiation. DEP increased expression of pro- and mature forms of cathepsin D, which increases lysosomal activity. However, DEP suppressed expression of the soluble N-ethylmaleimide-sensitive factor attachment protein receptor proteins (STX17, VAMP8, SNAP29, YKT6, and STX7) to inhibit autolysosome formation, resulting in accumulation of autophagosomes. LC3B, p62, and caspase-8 form a tertiary complex in accumulated autophagosomes, which is known to serve as a platform for caspase-8 activation. Indeed, DEP activates caspase-8 and pretreatment with a caspase-8 inhibitor suppressed DEP-induced apoptosis. Furthermore, depletion of p62 decreased caspase-8 and caspase-3 activation and inhibited the DEP-induced apoptosis. Taken together, these findings demonstrated that DEP induced HUVECs apoptosis by inhibiting autophagosome maturation and identified caspase-8 as a novel mediator of DEP-induced ECs apoptosis.


Assuntos
Autofagossomos , Emissões de Veículos , Apoptose/fisiologia , Autofagossomos/metabolismo , Autofagia , Proteína Beclina-1/metabolismo , Caspase 3/metabolismo , Caspase 8/metabolismo , Catepsina D/metabolismo , Células Endoteliais da Veia Umbilical Humana/metabolismo , Humanos , Proteínas R-SNARE/metabolismo , Proteínas de Ligação a Fator Solúvel Sensível a N-Etilmaleimida , Emissões de Veículos/toxicidade
3.
Biochem Biophys Rep ; 29: 101190, 2022 Mar.
Artigo em Inglês | MEDLINE | ID: mdl-34988296

RESUMO

Particulate matter (PM) causes several diseases, including cardiovascular diseases (CVDs). Previous studies compared the gene expression patterns in airway epithelial cells and keratinocytes exposed to PM. However, analysis of differentially expressed gene (DEGs) in endothelial cells exposed to PM2.5 (diameter less than 2.5 µm) from fossil fuel combustion has been limited. Here, we exposed human umbilical vein endothelial cells (HUVECs) to PM2.5 from combustion of gasoline, performed RNA-seq analysis, and identified DEGs. Exposure to the IC50 concentrations of gasoline engine exhaust PM2.5 (GPM) for 24 h yielded 1081 (up-regulation: 446, down-regulation: 635) DEGs. The most highly up-regulated gene is NGFR followed by ADM2 and NUPR1. The most highly down-regulated gene is TNFSF10 followed by GDF3 and EDN1. Gene Ontology enrichment analysis revealed that GPM regulated genes involved in cardiovascular system development, tube development and circulatory system development. Kyoto Encyclopedia of Genes and Genomes and Reactome pathway analyses showed that genes related to cytokine-cytokine receptor interactions and cytokine signaling in the immune system were significantly affected by GPM. We confirmed the RNA-seq data of some highly altered genes by qRT-PCR and showed the induction of NGFR, ADM2 and IL-11 at a protein level, indicating that the observed gene expression patterns were reliable. Given the adverse effects of PM2.5 on CVDs, our findings provide new insight into the importance of several DEGs and pathways in GPM-induced CVDs.

SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA