Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 31
Filtrar
Mais filtros








Base de dados
Intervalo de ano de publicação
1.
J Virol ; 98(4): e0011224, 2024 Apr 16.
Artigo em Inglês | MEDLINE | ID: mdl-38506509

RESUMO

Live-attenuated virus vaccines provide long-lived protection against viral disease but carry inherent risks of residual pathogenicity and genetic reversion. The live-attenuated Candid#1 vaccine was developed to protect Argentines against lethal infection by the Argentine hemorrhagic fever arenavirus, Junín virus. Despite its safety and efficacy in Phase III clinical study, the vaccine is not licensed in the US, in part due to concerns regarding the genetic stability of attenuation. Previous studies had identified a single F427I mutation in the transmembrane domain of the Candid#1 envelope glycoprotein GPC as the key determinant of attenuation, as well as the propensity of this mutation to revert upon passage in cell culture and neonatal mice. To ascertain the consequences of this reversion event, we introduced the I427F mutation into recombinant Candid#1 (I427F rCan) and investigated the effects in two validated small-animal models: in mice expressing the essential virus receptor (human transferrin receptor 1; huTfR1) and in the conventional guinea pig model. We report that I427F rCan displays only modest virulence in huTfR1 mice and appears attenuated in guinea pigs. Reversion at another attenuating locus in Candid#1 GPC (T168A) was also examined, and a similar pattern was observed. By contrast, virus bearing both revertant mutations (A168T+I427F rCan) approached the lethal virulence of the pathogenic Romero strain in huTfR1 mice. Virulence was less extreme in guinea pigs. Our findings suggest that genetic stabilization at both positions is required to minimize the likelihood of reversion to virulence in a second-generation Candid#1 vaccine.IMPORTANCELive-attenuated virus vaccines, such as measles/mumps/rubella and oral poliovirus, provide robust protection against disease but carry with them the risk of genetic reversion to the virulent form. Here, we analyze the genetics of reversion in the live-attenuated Candid#1 vaccine that is used to protect against Argentine hemorrhagic fever, an often-lethal disease caused by the Junín arenavirus. In two validated small-animal models, we find that restoration of virulence in recombinant Candid#1 viruses requires back-mutation at two positions specific to the Candid#1 envelope glycoprotein GPC, at positions 168 and 427. Viruses bearing only a single change showed only modest virulence. We discuss strategies to genetically harden Candid#1 GPC against these two reversion events in order to develop a safer second-generation Candid#1 vaccine virus.


Assuntos
Febre Hemorrágica Americana , Vírus Junin , Vacinas Virais , Animais , Cobaias , Humanos , Camundongos , Glicoproteínas/genética , Febre Hemorrágica Americana/prevenção & controle , Vírus Junin/fisiologia , População da América do Sul , Vacinas Atenuadas/genética , Vacinas Virais/genética , Virulência
2.
J Virol ; 98(4): e0013224, 2024 Apr 16.
Artigo em Inglês | MEDLINE | ID: mdl-38511932

RESUMO

Heartland virus (HRTV) is an emerging tick-borne bandavirus that causes a febrile illness of varying severity in humans, with cases reported in eastern and midwestern regions of the United States. No vaccines or approved therapies are available to prevent or treat HRTV disease. Here, we describe the genetic changes, natural history of disease, and pathogenesis of a mouse-adapted HRTV (MA-HRTV) that is uniformly lethal in 7- to 8-week-old AG129 mice at low challenge doses. We used this model to assess the efficacy of the ribonucleoside analog, 4'-fluorouridine (EIDD-2749), and showed that once-daily oral treatment with 3 mg/kg of drug, initiated after the onset of disease, protects mice against lethal MA-HRTV challenge and reduces viral loads in blood and tissues. Our findings provide insights into HRTV virulence and pathogenesis and support further development of EIDD-2749 as a therapeutic intervention for HRTV disease. IMPORTANCE: More than 60 cases of HRTV disease spanning 14 states have been reported to the United States Centers for Disease Control and Prevention. The expanding range of the Lone Star tick that transmits HRTV, the growing population of at-risk persons living in geographic areas where the tick is abundant, and the lack of antiviral treatments or vaccines raise significant public health concerns. Here, we report the development of a new small-animal model of lethal HRTV disease to gain insight into HRTV pathogenesis and the application of this model for the preclinical development of a promising new antiviral drug candidate, EIDD-2749. Our findings shed light on how the virus causes disease and support the continued development of EIDD-2749 as a therapeutic for severe cases of HRTV infection.


Assuntos
Infecções por Bunyaviridae , Bunyaviridae , Nucleotídeos de Uracila , Animais , Humanos , Camundongos , Infecções por Bunyaviridae/tratamento farmacológico , Carrapatos , Estados Unidos , Nucleotídeos de Uracila/uso terapêutico
3.
Artigo em Inglês | MEDLINE | ID: mdl-33558299

RESUMO

The impact of severe acute respiratory syndrome coronavirus-2 (SARS-CoV-2), the causative agent of COVID-19, is global and unprecedented. Although remdesivir has recently been approved by the FDA to treat SARS-CoV-2 infection, no oral antiviral is available for outpatient treatment. AT-527, an orally administered double prodrug of a guanosine nucleotide analog, was previously shown to be highly efficacious and well tolerated in hepatitis C virus (HCV)-infected subjects. Here, we report the potent in vitro activity of AT-511, the free base of AT-527, against several coronaviruses, including SARS-CoV-2. In normal human airway epithelial cells, the concentration of AT-511 required to inhibit replication of SARS-CoV-2 by 90% (EC90) was 0.47 µM, very similar to its EC90 against human coronavirus (HCoV)-229E, HCoV-OC43, and SARS-CoV in Huh-7 cells. Little to no cytotoxicity was observed for AT-511 at concentrations up to 100 µM. Substantial levels of the active triphosphate metabolite AT-9010 were formed in normal human bronchial and nasal epithelial cells incubated with 10 µM AT-511 (698 ± 15 and 236 ± 14 µM, respectively), with a half-life of at least 38 h. Results from steady-state pharmacokinetic and tissue distribution studies of nonhuman primates administered oral doses of AT-527, as well as pharmacokinetic data from subjects given daily oral doses of AT-527, predict that twice daily oral doses of 550 mg AT-527 will produce AT-9010 trough concentrations in human lung that exceed the EC90 observed for the prodrug against SARS-CoV-2 replication. This suggests that AT-527 may be an effective treatment option for COVID-19.


Assuntos
Antivirais/farmacologia , Tratamento Farmacológico da COVID-19 , Guanosina Monofosfato/análogos & derivados , Guanosina/farmacologia , Fosforamidas/farmacologia , Pró-Fármacos/farmacologia , SARS-CoV-2/efeitos dos fármacos , Administração Oral , Animais , COVID-19/virologia , Linhagem Celular , Linhagem Celular Tumoral , Chlorocebus aethiops , Coronavirus Humano 229E/metabolismo , Coronavirus Humano OC43/metabolismo , Cricetinae , Células Epiteliais/virologia , Guanosina Monofosfato/farmacologia , Humanos , Pulmão/virologia , SARS-CoV-2/metabolismo , Células Vero , Replicação Viral/efeitos dos fármacos
4.
Cell Cycle ; 19(24): 3632-3638, 2020 12.
Artigo em Inglês | MEDLINE | ID: mdl-33305659

RESUMO

PT150 is a clinical-stage molecule, taken orally, with a strong safety profile having completed Phase 1 and Phase 2 clinical trials for its original use as an antidepressant. It has an active IND for COVID-19. Antiviral activities have been found for PT150 and other members of its class in a variety of virus families; thus, it was now tested against SARS-CoV-2 in human bronchial epithelial lining cells and showed effective 90% inhibitory antiviral concentration (EC90) of 5.55 µM. PT150 is a member of an extended platform of novel glucocorticoid receptor (GR) and androgen receptor (AR) modulating molecules. In vivo, their predominant net effect is one of systemic glucocorticoid antagonism, but they also show direct downregulation of AR and minor GR agonism at the cellular level. We hypothesize that anti-SARS-CoV-2 activity depends in part on this AR downregulation through diminished TMPRSS2 expression and modulation of ACE2 activity. Given that hypercortisolemia is now suggested to be a significant co-factor for COVID-19 progression, we also postulate an additive role for its potent immunomodulatory effects through systemic antagonism of cortisol.


Assuntos
Antivirais/farmacologia , Tratamento Farmacológico da COVID-19 , Receptores Androgênicos/metabolismo , Receptores de Glucocorticoides/metabolismo , SARS-CoV-2/efeitos dos fármacos , Células Epiteliais Alveolares/efeitos dos fármacos , Células Epiteliais Alveolares/virologia , Enzima de Conversão de Angiotensina 2/metabolismo , Antivirais/uso terapêutico , Linhagem Celular , Progressão da Doença , Regulação para Baixo , Glucocorticoides/antagonistas & inibidores , Glucocorticoides/metabolismo , Humanos , Hidrocortisona/antagonistas & inibidores , Fatores Imunológicos/farmacologia , Fatores Imunológicos/uso terapêutico , Coronavírus da Síndrome Respiratória do Oriente Médio/efeitos dos fármacos , Receptores de Glucocorticoides/agonistas , Serina Endopeptidases/metabolismo
5.
PLoS Pathog ; 14(12): e1007439, 2018 12.
Artigo em Inglês | MEDLINE | ID: mdl-30576397

RESUMO

Arenaviruses are a significant cause of hemorrhagic fever, an often-fatal disease for which there is no approved antiviral therapy. Lassa fever in particular generates high morbidity and mortality in West Africa, where the disease is endemic, and a recent outbreak in Nigeria was larger and more geographically diverse than usual. We are developing LHF-535, a small-molecule viral entry inhibitor that targets the arenavirus envelope glycoprotein, as a therapeutic candidate for Lassa fever and other hemorrhagic fevers of arenavirus origin. Using a lentiviral pseudotype infectivity assay, we determined that LHF-535 had sub-nanomolar potency against the viral envelope glycoproteins from all Lassa virus lineages, with the exception of the glycoprotein from the LP strain from lineage I, which was 100-fold less sensitive than that of other strains. This reduced sensitivity was mediated by a unique amino acid substitution, V434I, in the transmembrane domain of the envelope glycoprotein GP2 subunit. This position corresponds to the attenuation determinant of Candid#1, a live-attenuated Junín virus vaccine strain used to prevent Argentine hemorrhagic fever. Using a virus-yield reduction assay, we determined that LHF-535 potently inhibited Junín virus, but not Candid#1, and the Candid#1 attenuation determinant, F427I, regulated this difference in sensitivity. We also demonstrated that a daily oral dose of LHF-535 at 10 mg/kg protected mice from a lethal dose of Tacaribe virus. Serial passage of Tacaribe virus in LHF-535-treated Vero cells yielded viruses that were resistant to LHF-535, and the majority of drug-resistant viruses exhibited attenuated pathogenesis. These findings provide a framework for the clinical development of LHF-535 as a broad-spectrum inhibitor of arenavirus entry and provide an important context for monitoring the emergence of drug-resistant viruses.


Assuntos
Antivirais/farmacologia , Febre Lassa , Vírus Lassa/genética , Virulência/efeitos dos fármacos , Virulência/genética , Animais , Chlorocebus aethiops , Farmacorresistência Viral/efeitos dos fármacos , Farmacorresistência Viral/genética , Células HEK293 , Humanos , Vírus Lassa/efeitos dos fármacos , Camundongos , Mutação , Células Vero , Proteínas do Envelope Viral/genética
6.
Antiviral Res ; 160: 48-54, 2018 12.
Artigo em Inglês | MEDLINE | ID: mdl-30339848

RESUMO

2'-Fluoro-2'-deoxycytidine (2'-FdC) was reported to inhibit various viruses in vitro, including Borna disease, hepatitis C, Lassa fever, influenza and certain herpes viruses, and is inhibitory to influenza viruses in mice. We investigated the antiviral activity of 2'-FdC against several unrelated bunyaviruses in 50% cytopathic effect (CPE) inhibition assays and, with viruses that cause limited CPE, 90% virus yield reduction (VYR) assays. La Crosse (LACV), Maporal, Punta Toro, Rift Valley fever (RVFV), and San Angelo viruses were inhibited in CPE assays at 2.2-9.7 µM concentrations. In VYR assays, Heartland and severe fever with thrombocytopenia syndrome (SFTSV) viruses were inhibited at 0.9 and 3.7 µM, respectively. In contrast, ribavirin inhibited these viruses at an average of 47 µM. Antiviral efficacy studies were also conducted in mice infected with RVFV, SFTSV, and LACV. Against RVFV, 2'-FdC (100 and 200 mg/kg/day) and ribavirin (100 mg/kg/day) treatments each delayed mortality by approximately 6 days compared to placebo. Liver, spleen, and serum viral titers were significantly reduced by antiviral treatments. 2'-FdC (100 and 200 mg/kg/day) prevented death in SFTSV-infected mice, but was not as effective as favipiravir (100 mg/kg/day) based on body weight loss during infection. The 100 mg/kg/day doses of 2'-FdC and favipiravir significantly reduced liver, spleen, and serum viral titers. 2'-FdC and ribavirin afforded no protection against LACV infection in mice, which is encephalitic and thus inherently more difficult to treat. Taken together, our data suggest that 2'-FdC may be a viable candidate for treating certain non-encephalitic bunyavirus infections such as those caused by phleboviruses.


Assuntos
Antivirais/administração & dosagem , Antivirais/farmacologia , Infecções por Bunyaviridae/tratamento farmacológico , Vírus de DNA/efeitos dos fármacos , Desoxicitidina/análogos & derivados , Vírus de RNA/efeitos dos fármacos , Estruturas Animais/virologia , Animais , Peso Corporal , Efeito Citopatogênico Viral , Vírus de DNA/crescimento & desenvolvimento , Desoxicitidina/administração & dosagem , Desoxicitidina/farmacologia , Modelos Animais de Doenças , Camundongos , Testes de Sensibilidade Microbiana , Placebos/administração & dosagem , Vírus de RNA/crescimento & desenvolvimento , Análise de Sobrevida , Resultado do Tratamento , Carga Viral
7.
Antiviral Res ; 156: 38-45, 2018 08.
Artigo em Inglês | MEDLINE | ID: mdl-29864447

RESUMO

Rift Valley fever virus (RVFV) is a mosquito-borne pathogen endemic to sub-Saharan Africa and the Arabian Peninsula. There are no approved antiviral therapies or vaccines available to treat or prevent severe disease associated with RVFV infection in humans. The adenosine analog, galidesivir (BCX4430), is a broad-spectrum antiviral drug candidate with in vitro antiviral potency (EC50 of less than 50 µM) in more than 20 different viruses across eight different virus families. Here we report on the activity of galidesivir in the hamster model of peracute RVFV infection. Intramuscular and intraperitoneal treatments effectively limited systemic RVFV (strain ZH501) infection as demonstrated by significantly improved survival outcomes and the absence of infectious virus in the spleen and the majority of the serum, brain, and liver samples collected from infected animals. Our findings support the further development of galidesivir as an antiviral therapy for use in treating severe RVFV infection, and possibly other related phleboviral diseases.


Assuntos
Antivirais/administração & dosagem , Nucleosídeos de Purina/administração & dosagem , Febre do Vale de Rift/tratamento farmacológico , Vírus da Febre do Vale do Rift/efeitos dos fármacos , Adenina/análogos & derivados , Adenosina/análogos & derivados , Animais , Modelos Animais de Doenças , Injeções Intramusculares , Injeções Intraperitoneais , Fígado/virologia , Mesocricetus , Pirrolidinas , Baço/virologia , Análise de Sobrevida , Resultado do Tratamento
8.
J Infect Dis ; 218(4): 522-527, 2018 07 13.
Artigo em Inglês | MEDLINE | ID: mdl-29762684

RESUMO

Lymphocytic choriomeningitis virus (LCMV) poses a substantial risk to immunocompromised individuals. The case fatality rate in recent clusters of LCMV infection in immunosuppressed organ transplantation recipients has exceeded 70%. In the present study, we demonstrate potent antiviral activity of favipiravir against acute, disseminated LCMV infection in NZB mice. Treatment resulted in complete protection against mortality and dramatic reductions in viral loads. In contrast, ribavirin, the current antiviral of choice, was mostly ineffective. Our findings, and the high lethality associated with LCMV infection in transplant recipients, support the consideration of favipiravir as a first-line therapeutic option.


Assuntos
Amidas/administração & dosagem , Antivirais/administração & dosagem , Coriomeningite Linfocítica/tratamento farmacológico , Vírus da Coriomeningite Linfocítica/isolamento & purificação , Pirazinas/administração & dosagem , Carga Viral , Animais , Modelos Animais de Doenças , Feminino , Hospedeiro Imunocomprometido , Coriomeningite Linfocítica/virologia , Masculino , Camundongos Endogâmicos NZB , Ribavirina/administração & dosagem , Análise de Sobrevida , Transplantados , Resultado do Tratamento
9.
Virology ; 511: 175-183, 2017 11.
Artigo em Inglês | MEDLINE | ID: mdl-28865344

RESUMO

Heartland virus (HRTV) is an emerging tick-borne virus (Bunyaviridae, Phlebovirus) that has caused sporadic cases of human disease in several central and mid-eastern states of America. Animal models of HRTV disease are needed to gain insights into viral pathogenesis and advancing antiviral drug development. Presence of clinical disease following HRTV challenge in hamsters deficient in STAT2 function underscores the important role played by type I interferon-induced antiviral responses. However, the recovery of most of the infected animals suggests that other mechanisms to control infection and limit disease offer substantial protection. The most prominent disease sign with HRTV infection in STAT2 knockout hamsters was dramatic weight loss with clinical laboratory and histopathology demonstrating acute inflammation in the spleen, lymph node, liver and lung. Finally, we show that HRTV disease in hamsters can be prevented by the use of favipiravir, a promising broad-spectrum antiviral in clinical development for the treatment of influenza.


Assuntos
Amidas/uso terapêutico , Antivirais/uso terapêutico , Infecções por Bunyaviridae/patologia , Infecções por Bunyaviridae/prevenção & controle , Pirazinas/uso terapêutico , Fator de Transcrição STAT2/deficiência , Estruturas Animais/patologia , Animais , Quimioprevenção , Cricetinae , Modelos Animais de Doenças , Inflamação/patologia , Interferon Tipo I/imunologia , Resultado do Tratamento
10.
J Virol Methods ; 246: 51-57, 2017 08.
Artigo em Inglês | MEDLINE | ID: mdl-28359770

RESUMO

Studies were conducted to determine the performance of four dyes in assessing antiviral activities of compounds against three RNA viruses with differing cytopathogenic properties. Dyes included alamarBlue® measured by absorbance (ALB-A) and fluorescence (ALB-F), neutral red (NR), Viral ToxGlo™ (VTG), and WST-1. Viruses were chikungunya, dengue type 2, and Junin, which generally cause 100, 80-90, and 50% maximal cytopathic effect (CPE), respectively, in Vero or Vero 76 cells Compounds evaluated were 6-azauridine, BCX-4430, 3-deazaguanine, EICAR, favipiravir, infergen, mycophenolic acid (MPA), ribavirin, and tiazofurin. The 50% virus-inhibitory (EC50) values for each inhibitor and virus combination did not vary significantly based on the dye used. However, dyes varied in distinguishing the vitality of virus-infected cultures when not all cells were killed by virus infection. For example, VTG uptake into dengue-infected cells was nearly 50% when visual examination showed only 10-20% cell survival. ALB-A measured infected cell viability differently than ALB-F as follows: 16% versus 32% (dengue-infected), respectively, and 51% versus 72% (Junin-infected), respectively. Cytotoxicity (CC50) assays with dyes in uninfected proliferating cells produced similar CC50 values for EICAR (1.5-8.9µM) and MPA (0.8-2.5µM). 6-Azauridine toxicity was 6.1-17.5µM with NR, VTG, and WST-1, compared to 48-92µM with ALB-A and ALB-F (P<0.001). Curiously, the CC50 values for 3-deazaguanine were 83-93µM with ALB-F versus 2.4-7.0µM with all other dyes including ALB-A (P<0.001). Overall, ALB minimized the toxicities detected with these two inhibitors. Because the choice of dyes affected CC50 values, this impacted on the resulting in vitro selectivity indexes (calculated as CC50/EC50 ratio).


Assuntos
Antivirais/farmacologia , Sobrevivência Celular/efeitos dos fármacos , Corantes , Efeito Citopatogênico Viral , Vírus de RNA/efeitos dos fármacos , Vírus/efeitos dos fármacos , Animais , Vírus Chikungunya/efeitos dos fármacos , Vírus Chikungunya/patogenicidade , Vírus Chikungunya/fisiologia , Chlorocebus aethiops , Corantes/química , Vírus da Dengue/efeitos dos fármacos , Vírus da Dengue/patogenicidade , Vírus da Dengue/fisiologia , Vírus Junin/efeitos dos fármacos , Vírus Junin/patogenicidade , Vírus Junin/fisiologia , Oxazinas , Vírus de RNA/patogenicidade , Vírus de RNA/fisiologia , Células Vero , Replicação Viral/efeitos dos fármacos , Xantenos
11.
J Virol ; 91(3)2017 Feb 01.
Artigo em Inglês | MEDLINE | ID: mdl-27881648

RESUMO

Severe fever with thrombocytopenia syndrome (SFTS) is an emerging tick-borne disease endemic in parts of Asia. The etiologic agent, SFTS virus (SFTSV; family Bunyaviridae, genus Phlebovirus) has caused significant morbidity and mortality in China, South Korea, and Japan, with key features of disease being intense fever, thrombocytopenia, and leukopenia. Case fatality rates are estimated to be in the 30% range, and no antivirals or vaccines are approved for use for treatment and prevention of SFTS. There is evidence that in human cells, SFTSV sequesters STAT proteins in replication complexes, thereby inhibiting type I interferon signaling. Here, we demonstrate that hamsters devoid of functional STAT2 are highly susceptible to as few as 10 PFU of SFTSV, with animals generally succumbing within 5 to 6 days after subcutaneous challenge. The disease included marked thrombocytopenia and inflammatory disease characteristic of the condition in humans. Infectious virus titers were present in the blood and most tissues 3 days after virus challenge, and severe inflammatory lesions were found in the spleen and liver samples of SFTSV-infected hamsters. We also show that SFTSV infection in STAT2 knockout (KO) hamsters is responsive to favipiravir treatment, which protected all animals from lethal disease and reduced serum and tissue viral loads by 3 to 6 orders of magnitude. Taken together, our results provide additional insights into the pathogenesis of SFTSV infection and support the use of the newly described STAT2 KO hamster model for evaluation of promising antiviral therapies. IMPORTANCE: Severe fever with thrombocytopenia syndrome (SFTS) is an emerging viral disease for which there are currently no therapeutic options or available vaccines. The causative agent, SFTS virus (SFTSV), is present in China, South Korea, and Japan, and infections requiring medical attention result in death in as many as 30% of the cases. Here, we describe a novel model of SFTS in hamsters genetically engineered to be deficient in a protein that helps protect humans and animals against viral infections. These hamsters were found to be susceptible to SFTSV and share disease features associated with the disease in humans. Importantly, we also show that SFTSV infection in hamsters can be effectively treated with a broad-spectrum antiviral drug approved for use in Japan. Our findings suggest that the new SFTS model will be an excellent resource to better understand SFTSV infection and disease as well as a valuable tool for evaluating promising antiviral drugs.


Assuntos
Infecções por Bunyaviridae/virologia , Modelos Biológicos , Phlebovirus/fisiologia , Amidas/farmacologia , Animais , Animais Geneticamente Modificados , Antivirais/farmacologia , Infecções por Bunyaviridae/tratamento farmacológico , Infecções por Bunyaviridae/genética , Infecções por Bunyaviridae/mortalidade , Cricetinae , Modelos Animais de Doenças , Suscetibilidade a Doenças , Genótipo , Humanos , Fenótipo , Pirazinas/farmacologia , Fator de Transcrição STAT2/genética
12.
Antiviral Res ; 126: 62-8, 2016 Feb.
Artigo em Inglês | MEDLINE | ID: mdl-26711718

RESUMO

Favipiravir is approved in Japan to treat novel or re-emerging influenza viruses, and is active against a broad spectrum of RNA viruses, including Ebola. Ribavirin is the only other licensed drug with activity against multiple RNA viruses. Recent studies show that ribavirin and favipiravir act synergistically to inhibit bunyavirus infections in cultured cells and laboratory mice, likely due to their different mechanisms of action. Convalescent immune globulin is the only approved treatment for Argentine hemorrhagic fever caused by the rodent-borne Junin arenavirus. We previously reported that favipiravir is highly effective in a number of small animal models of Argentine hemorrhagic fever. We now report that addition of low dose of ribavirin synergistically potentiates the activity of favipiravir against Junin virus infection of guinea pigs and another arenavirus, Pichinde virus infection of hamsters. This suggests that the efficacy of favipiravir against hemorrhagic fever viruses can be further enhanced through the addition of low-dose ribavirin.


Assuntos
Amidas/farmacologia , Antivirais/farmacologia , Febres Hemorrágicas Virais/tratamento farmacológico , Pirazinas/farmacologia , Vírus de RNA/efeitos dos fármacos , Ribavirina/farmacologia , Animais , Arenavirus/efeitos dos fármacos , Chlorocebus aethiops , Cricetinae , Vírus da Dengue/efeitos dos fármacos , Modelos Animais de Doenças , Sinergismo Farmacológico , Feminino , Cobaias , Orthohantavírus/efeitos dos fármacos , Vírus da Febre Hemorrágica da Crimeia-Congo/efeitos dos fármacos , Febre Hemorrágica Americana/tratamento farmacológico , Doença pelo Vírus Ebola/tratamento farmacológico , Febres Hemorrágicas Virais/sangue , Febres Hemorrágicas Virais/veterinária , Febres Hemorrágicas Virais/virologia , Vírus Junin/efeitos dos fármacos , Masculino , Mesocricetus , Camundongos , Células Vero
13.
Front Microbiol ; 6: 651, 2015.
Artigo em Inglês | MEDLINE | ID: mdl-26175722

RESUMO

Rift Valley fever virus (RVFV; Bunyaviridae, Phlebovirus) causes a range of illnesses that include retinitis, fulminant hepatitis, neurologic disease, and hemorrhagic fever. In hospitalized individuals, case fatality rates can be as high as 10-20%. There are no vaccines or antivirals approved for human use to prevent or treat severe RVFV infections. We previously tested the efficacy of the MP-12 vaccine strain and related variants with NSs truncations as a post-exposure prophylaxis in mice infected with wild-type pathogenic RVFV strain ZH501. Post-exposure efficacy of the rMP12-C13type, a recombinant MP-12 vaccine virus which encodes an in-frame truncation removing 69% of the NSs protein, resulted in 30% survival when administering the virus within 30 min of subcutaneous ZH501 challenge in mice, while the parental MP-12 virus conferred no protection by post-exposure vaccination. Here, we demonstrate uniform protection of hamsters by post-exposure vaccination with rMP12-C13type administered 6 h post-ZH501 infection while no efficacy was observed with the parental MP-12 virus. Notably, both the MP-12 and rMP12-C13type viruses were highly effective (100% protection) when administered 21 days prior to challenge. In a subsequent study delaying vaccination until 8, 12, and 24 h post-RVFV exposure, we observed 80, 70, and 30% survival, respectively. Our findings indicate that the rapid protective innate immune response elicited by rMP12-C13type may be due to the truncated NSs protein, suggesting that the resulting functional inactivation of NSs plays an important role in the observed post-exposure efficacy. Taken together, the data demonstrate that post-exposure vaccination with rMP12-C13type is effective in limiting ZH501 replication and associated disease in standard pre-exposure vaccination and post-challenge treatment models of RVFV infection, and suggest an extended post-exposure prophylaxis window beyond that initially observed in mice.

14.
Antivir Chem Chemother ; 23(4): 151-9, 2014 Jan 29.
Artigo em Inglês | MEDLINE | ID: mdl-23337126

RESUMO

BACKGROUND: Junín virus (JUNV) and several other clade B New World arenaviruses cause human disease ranging from mild febrile illness to severe viral haemorrhagic fever. These viruses pose a significant threat to national security and safe and effective therapies are limited except in Argentina, where immune plasma is the standard of care for treating JUNV infection in cases of Argentine haemorrhagic fever. METHODS: An in vitro screen of the Chemtura library identified several compounds with activity against Tacaribe virus (TCRV), a clade B arenavirus closely related to JUNV. Of these compounds, D746, a phenolic dibenzylsulfide, was further pursued for additional in vitro studies and evaluated in the AG129 mouse TCRV infection model. RESULTS: D746 was found to act during an early to intermediate stage of the TCRV replication cycle and µM range activity was confirmed by virus yield reduction assays with both TCRV and JUNV. Although intraperitoneal twice daily treatment regimens were found to be highly effective when started 2 h prior to TCRV challenge in AG129 mice, post-exposure treatment initiated 3 days after infection was not efficacious. Interestingly, despite the pre-exposure treatment success, D746 did not reduce serum or tissue virus titres during the acute infection. Moreover, D746 elicited ascites fluid accumulation in mice during, as well as independent of, infection. CONCLUSIONS: Our findings suggest that D746 may be altering the host response to TCRV infection in AG129 mice in a way that limits pathogenesis and thereby protects mice from otherwise lethal infection in the absence of measurable reductions in viral burden.


Assuntos
Antivirais/química , Antivirais/uso terapêutico , Arenavirus do Novo Mundo/efeitos dos fármacos , Febre Hemorrágica Americana/tratamento farmacológico , Animais , Chlorocebus aethiops , Humanos , Vírus Junin/efeitos dos fármacos , Camundongos , Fenóis/química , Fenóis/uso terapêutico , Sulfetos/química , Sulfetos/uso terapêutico , Células Vero
15.
Antimicrob Agents Chemother ; 56(8): 4168-74, 2012 Aug.
Artigo em Inglês | MEDLINE | ID: mdl-22615273

RESUMO

Punta Toro virus (PTV; Bunyaviridae, Phlebovirus) is related to Rift Valley fever virus (RVFV), a pathogenic agent which causes severe disease in humans and livestock primarily in the sub-Saharan region of Africa. The recent range expansion of RVFV and the potential for its intentional release into naïve populations pose a significant threat to public health and agriculture. Studies modeling disease in rodents and nonhuman primates have shown that PTV and RVFV are highly sensitive to the antiviral effects of alpha interferon (IFN-α), an important component of the innate antiviral host response. While recombinant IFN-α has high therapeutic value, its utility for the treatment of neglected tropical diseases is hindered by its short in vivo half-life and costly production of longer-lasting pegylated IFNs. Here, we demonstrate extended preexposure protection against lethal PTV challenge following a single intranasal administration of DEF201, which is a replication-deficient human adenovirus type 5 vector engineered to constitutively express consensus IFN-α (cIFN-α) from transduced host cells. DEF201 was also efficacious when administered within 24 h as a postexposure countermeasure. Serum concentrations of cIFN-α could be detected as early as 8 h following treatment and persisted for more than 1 week. The prolonged antiphlebovirus prophylactic effect, low production costs, and ease of administration make DEF201 a promising agent for intervention during natural disease outbreaks and for countering possible bioterrorist acts.


Assuntos
Adenoviridae/genética , Infecções por Bunyaviridae/prevenção & controle , Interferon-alfa/genética , Interferon-alfa/metabolismo , Phlebovirus , Administração Intranasal , Animais , Antivirais/sangue , Antivirais/metabolismo , Cricetinae , Feminino , Vetores Genéticos , Interferon-alfa/sangue , Fígado/virologia , Mesocricetus , Proteínas Recombinantes
16.
Antivir Chem Chemother ; 21(5): 193-200, 2011 May 12.
Artigo em Inglês | MEDLINE | ID: mdl-21566265

RESUMO

BACKGROUND: Pathogenic hantaviruses geographically distributed in the Old World cause haemorrhagic fever with renal syndrome (HFRS), whereas New World hantaviruses are the aetiological agents of hantavirus cardiopulmonary syndrome (HCPS). Ribavirin, a drug associated with toxicities, is presently indicated for treatment of HFRS, whereas treatment of the more frequently lethal HCPS is limited to supportive care. Because of the need for safe and effective antivirals to treat severe hantaviral infections, we evaluated favipiravir (T-705) against Dobrava and Maporal viruses as representative Old World and New World hantaviruses, respectively. Dobrava virus causes HFRS in Europe. Maporal virus (MPRLV), recently isolated from western Venezuela, is phylogenetically similar to Andes virus, the principal cause of HCPS in Argentina. METHODS: Hantavirus replication in the presence of various inhibitors was measured by focus-forming unit assays and quantitative reverse transcriptase PCR. Phylogenetic relationships were assessed by the neighbour-joining and bootstrap consensus methods. RESULTS: Here, we show that infection of Vero E6 cells with MPRLV is dependent on ß3 integrins, similar to that reported for pathogenic hantaviruses. Furthermore, by analysis of molecular determinants associated with the G1 glycoprotein cytoplasmic tail, we show the close genetic proximity of MPRLV to other HCPS-causing hantaviruses in these regions predictive of pathogenicity. We also demonstrate anti-hantavirus activity by favipiravir with inhibitory concentrations ranging from 65 to 93 µM and selectivity indices>50. CONCLUSIONS: Our data suggest that MPRLV may serve as a safer alternative to modelling infection caused by the highly lethal Andes virus and that hantaviruses are sensitive to the effects of favipiravir in cell culture.


Assuntos
Amidas/farmacologia , Antivirais/farmacologia , Orthohantavírus/efeitos dos fármacos , Orthohantavírus/genética , Pirazinas/farmacologia , Animais , Células Cultivadas , Chlorocebus aethiops , Orthohantavírus/patogenicidade , Testes de Sensibilidade Microbiana , Células Vero , Replicação Viral/efeitos dos fármacos
17.
PLoS One ; 5(9)2010 Sep 16.
Artigo em Inglês | MEDLINE | ID: mdl-20862280

RESUMO

BACKGROUND: A growing number of arenaviruses can cause a devastating viral hemorrhagic fever (VHF) syndrome. They pose a public health threat as emerging viruses and because of their potential use as bioterror agents. All of the highly pathogenic New World arenaviruses (NWA) phylogenetically segregate into clade B and require maximum biosafety containment facilities for their study. Tacaribe virus (TCRV) is a nonpathogenic member of clade B that is closely related to the VHF arenaviruses at the amino acid level. Despite this relatedness, TCRV lacks the ability to antagonize the host interferon (IFN) response, which likely contributes to its inability to cause disease in animals other than newborn mice. METHODOLOGY/PRINCIPAL FINDINGS: Here we describe a new mouse model based on TCRV challenge of AG129 IFN-α/ß and -γ receptor-deficient mice. Titration of the virus by intraperitoneal (i.p.) challenge of AG129 mice resulted in an LD(50) of ∼100 fifty percent cell culture infectious doses. Virus replication was evident in the serum, liver, lung, spleen, and brain 4-8 days after inoculation. MY-24, an aristeromycin derivative active against TCRV in cell culture at 0.9 µM, administered i.p. once daily for 7 days, offered highly significant (P<0.001) protection against mortality in the AG129 mouse TCRV infection model, without appreciably reducing viral burden. In contrast, in a hamster model of arenaviral hemorrhagic fever based on challenge with clade A Pichinde arenavirus, MY-24 did not offer significant protection against mortality. CONCLUSIONS/SIGNIFICANCE: MY-24 is believed to act as an inhibitor of S-adenosyl-L-homocysteine hydrolase, but our findings suggest that it may ameliorate disease by blunting the effects of the host response that play a role in disease pathogenesis. The new AG129 mouse TCRV infection model provides a safe and cost-effective means to conduct early-stage pre-clinical evaluations of candidate antiviral therapies that target clade B arenaviruses.


Assuntos
Adenosina/análogos & derivados , Antivirais/administração & dosagem , Infecções por Arenaviridae/tratamento farmacológico , Arenavirus do Novo Mundo/fisiologia , Modelos Animais de Doenças , Camundongos , Adenosina/administração & dosagem , Adenosina/química , Animais , Antivirais/química , Infecções por Arenaviridae/mortalidade , Infecções por Arenaviridae/virologia , Arenavirus do Novo Mundo/efeitos dos fármacos , Chlorocebus aethiops , Cricetinae , Feminino , Humanos , Masculino , Mesocricetus , Camundongos Knockout , Células Vero , Replicação Viral
18.
Antiviral Res ; 86(3): 261-7, 2010 Jun.
Artigo em Inglês | MEDLINE | ID: mdl-20227442

RESUMO

Yellow fever virus (YFV) continues to cause outbreaks of disease in endemic areas where vaccine is underutilized. Due to the effectiveness of the vaccine, antiviral development solely for the treatment of YFV is not feasible, but antivirals that are effective in the treatment of related viral diseases may be characterized for potential use against YFV as a secondary indication disease. 2'-C-methylcytidine (2'-C-MeC), a compound active against hepatitis C virus, was found to have activity against the 17D vaccine strain of YFV in cell culture (EC(90)=0.32 microg/ml, SI=141). This compound was effective when added as late as 16 h after virus challenge of Vero cells. When administered to YFV-infected hamsters 4 h prior to virus challenge at a dose as low as 80 mg/kg/d, 2'-C-MeC was effective in significantly improving survival and other disease parameters (weight change, serum ALT, and liver virus titers). Disease was improved when compound was administered beginning as late as 3 d post-virus infection. Broadly active antiviral compounds, such as 2'-C-MeC, represent potential for the development of compounds active against related viruses for the treatment of YFV.


Assuntos
Antivirais/administração & dosagem , Antivirais/farmacologia , Citidina/análogos & derivados , Febre Amarela/tratamento farmacológico , Vírus da Febre Amarela/efeitos dos fármacos , Alanina Transaminase/sangue , Animais , Aspartato Aminotransferases/sangue , Peso Corporal , Chlorocebus aethiops , Cricetinae , Citidina/administração & dosagem , Citidina/farmacologia , Feminino , Fígado/virologia , Mesocricetus , Análise de Sobrevida , Resultado do Tratamento , Células Vero , Carga Viral
19.
Antiviral Res ; 86(2): 121-7, 2010 May.
Artigo em Inglês | MEDLINE | ID: mdl-19874853

RESUMO

Several studies have reported favipiravir (T-705) to be effective in treating a number of viral diseases modeled in rodent systems. Notably, the related pyrazine derivative, T-1106, was found to be more effective than T-705 in treating yellow fever virus infection in hamsters. Based on these findings, we hypothesized that T-1106 may be more effective in treating hepatotropic Punta Toro virus (PTV, Phlebovirus) infection in rodents. In cell culture, the inhibitory concentrations of the compounds against various phleboviruses ranged from 3 to 55microM for T-705 and from 76 to 743microM for T-1106. In PTV-challenged hamsters, a model that generally presents with high liver viral loads, T-1106 was more effective at reducing mortality. However, in mice infected with PTV, a model wherein systemic infection is more prominent, the greater efficacy exhibited by T-1106 in the hamster system was not apparent. In contrast, T-705 was superior in preventing mortality in hamsters challenged with Pichinde virus (PICV, Arenavirus), an infection characterized as diffuse and pantropic. Remarkably, T-1106 has proven more active in vivo than would have been expected from our cell culture results, and our in vivo findings suggest that it is more effective in infections characterized predominantly by high levels of hepatic viral burden.


Assuntos
Amidas/uso terapêutico , Antivirais/uso terapêutico , Infecções por Bunyaviridae/tratamento farmacológico , Nucleosídeos/uso terapêutico , Pirazinas/uso terapêutico , Animais , Chlorocebus aethiops , Cricetinae , Modelos Animais de Doenças , Feminino , Fígado/virologia , Camundongos , Camundongos Endogâmicos C57BL , Testes de Sensibilidade Microbiana , Soro/virologia , Análise de Sobrevida , Resultado do Tratamento , Células Vero , Carga Viral
20.
Antiviral Res ; 81(1): 37-46, 2009 Jan.
Artigo em Inglês | MEDLINE | ID: mdl-18840471

RESUMO

Cationic liposome-DNA complexes (CLDC) are cationic/neutral lipid carriers complexed with plasmid DNA that when administered systemically results in a robust T(H)1 cytokine response. CLDC have been shown to be effective in prophylaxis and therapeutic treatment of animal models of viral disease. To determine the contribution of liposomal delivery and CpG content of the plasmid DNA to the efficacy of CLDC; plasmid, CpG-free plasmid DNA, or CpG-containing oligodeoxynucleotides (ODN) with and without liposomes, as well as poly(I:C(12)U), were evaluated for their ability to elicit protection against lethal Punta Toro virus (PTV, Bunyaviridae, phlebovirus) challenge in hamsters. CLDC-containing plasmid significantly improved survival, decreased systemic and liver viral loads, and reduced liver damage due to progression of viral infection. Mouse-reactive ODNs complexed with liposomes failed to protect hamsters, whereas ODNs known to cross-react with human and mouse (CpG 2006) or non-liposomal poly(I:C(12)U) showed survival benefit but did not limit liver injury. Liposomes complexed with a non-CpG motif-containing plasmid reduced liver viral load and tissue damage, but did not protect hamsters from death. To evaluate the mechanisms of the enhanced activity of CLDC, microarray experiments examined differences in the gene expression profile. The results suggest a broad T(H)1 response elicited by liposomal delivery of a diverse sequence containing CpG and non-CpG elements may be a more effective antiviral treatment than other nucleic acid based immunotherapeutics.


Assuntos
Oligodesoxirribonucleotídeos/administração & dosagem , Febre por Flebótomos/imunologia , Febre por Flebótomos/prevenção & controle , Phlebovirus/imunologia , Animais , Cricetinae , Citocinas/sangue , DNA/administração & dosagem , DNA/química , Feminino , Humanos , Lipossomos/química , Fígado/imunologia , Fígado/virologia , Mesocricetus , Camundongos , Camundongos Endogâmicos BALB C , Oligodesoxirribonucleotídeos/química , Febre por Flebótomos/terapia , Febre por Flebótomos/virologia , Phlebovirus/genética , Plasmídeos/administração & dosagem , Plasmídeos/química
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA