Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 38
Filtrar
1.
J Agric Food Chem ; 72(21): 12171-12183, 2024 May 29.
Artigo em Inglês | MEDLINE | ID: mdl-38748640

RESUMO

Ulcerative colitis (UC) is a complex chronic inflammatory disease closely associated with gut homeostasis dysfunction. The previous studies have shown that stachyose, a functional food additive, has the potential to enhance gut health and alleviate UC symptoms. However, the underlying mechanism of its effects remains unknown. In this study, our findings showed that dietary supplements of stachyose had a significant dose-dependent protective effect on colitis symptoms, regulation of gut microbiota, and restoration of the Treg/Th17 cell balance in dextran sulfate sodium (DSS) induced colitis mice. To further validate these findings, we conducted fecal microbiota transplantation (FMT) to treat DSS-induced colitis in mice. The results showed that microbiota from stachyose-treated mice exhibited a superior therapeutic effect against colitis and effectively regulated the Treg/Th17 cell balance in comparison to the control group. Moreover, both stachyose supplementation and FMT resulted in an increase in butyrate production and the activation of PPARγ. However, this effect was partially attenuated by PPARγ antagonist GW9662. These results suggested that stachyose alleviates UC symptoms by modulating gut microbiota and activating PPARγ. In conclusion, our work offers new insights into the benefical effects of stachyose on UC and its potential role in modulating gut microbiota.


Assuntos
Butiratos , Colite Ulcerativa , Microbioma Gastrointestinal , Camundongos Endogâmicos C57BL , PPAR gama , Transdução de Sinais , Linfócitos T Reguladores , Células Th17 , Animais , PPAR gama/metabolismo , PPAR gama/genética , Camundongos , Células Th17/imunologia , Linfócitos T Reguladores/imunologia , Microbioma Gastrointestinal/efeitos dos fármacos , Humanos , Masculino , Transdução de Sinais/efeitos dos fármacos , Colite Ulcerativa/imunologia , Colite Ulcerativa/terapia , Colite Ulcerativa/microbiologia , Colite Ulcerativa/tratamento farmacológico , Oligossacarídeos/administração & dosagem , Bactérias/classificação , Bactérias/isolamento & purificação , Bactérias/genética , Sulfato de Dextrana/efeitos adversos
2.
Int J Biol Sci ; 18(9): 3859-3873, 2022.
Artigo em Inglês | MEDLINE | ID: mdl-35813469

RESUMO

Chemotherapy has been widely used as a clinical treatment for cancer over the years. However, its effectiveness is limited because of resistance of cancer cells to programmed cell death (PCD) after treatment with anticancer drugs. To elucidate the resistance mechanism, we initially focused on cancer cell-specific mitophagy, an autophagic degradation of damaged mitochondria. This is because mitophagy has been reported to provide cancer cells with high resistance to anticancer drugs. Our data showed that TRIP-Br1 oncoprotein level was greatly increased in the mitochondria of breast cancer cells after treatment with various anticancer drugs including staurosporine (STS), the main focus of this study. STS treatment increased cellular ROS generation in cancer cells, which triggered mitochondrial translocation of TRIP-Br1 from the cytosol via dephosphorylation of TRIP-Br1 by protein phosphatase 2A (PP2A). Up-regulated mitochondrial TRIP-Br1 suppressed cellular ROS levels. In addition, TRIP-Br1 rapidly removed STS-mediated damaged mitochondria by activating mitophagy. It eventually suppressed STS-mediated PCD via degradation of VDACI, TOMM20, and TIMM23 mitochondrial membrane proteins. TRIP-Br1 enhanced mitophagy by increasing expression levels of two crucial lysosomal proteases, cathepsins B and D. In conclusion, TRIP-Br1 can suppress the sensitivity of breast cancer cells to anticancer drugs by activating autophagy/mitophagy, eventually promoting cancer cell survival.


Assuntos
Antineoplásicos , Neoplasias da Mama , Antineoplásicos/farmacologia , Apoptose , Autofagia , Neoplasias da Mama/tratamento farmacológico , Feminino , Humanos , Mitofagia , Proteínas Oncogênicas/farmacologia , Espécies Reativas de Oxigênio/metabolismo
3.
J Hematol Oncol ; 15(1): 82, 2022 06 16.
Artigo em Inglês | MEDLINE | ID: mdl-35710446

RESUMO

Much higher risk of cancer has been found in diabetes patients. Insulin receptor (IR) and insulin-like growth factor 1 receptor (IGF1R) have been extensively studied in both breast cancer and diabetes therapies. Interestingly, a recent study proposed that IR/IGF1R ratio is an important factor for breast cancer prognosis. Women with higher IR/IGF1R ratio showed poor breast cancer prognosis as well as hyperinsulinemia. Here, we propose a novel mechanism that oncogenic protein TRIP-Br1 renders breast cancer cells and insulin deficient mice to have higher IR/IGF1R ratio by positively and negatively regulating IR and IGF1R expression at the protein level, respectively. TRIP-Br1 repressed IR degradation by suppressing its ubiquitination. Meanwhile, TRIP-Br1 directly interacts with both IGF1R and NEDD4-1 E3 ubiquitin ligase, in which TRIP-Br1/NEDD4-1 degrades IGF1R via ubiquitin/proteasome system. TRIP-Br1-mediated higher IR/IGF1R ratio enhanced the proliferation and survival of breast cancer cells. In conclusion, current study may provide an important information in the regulatory mechanism of how breast cancer cells have acquired higher IR/IGF1R ratio.


Assuntos
Neoplasias da Mama , Fator de Crescimento Insulin-Like I , Animais , Neoplasias da Mama/metabolismo , Feminino , Humanos , Fator de Crescimento Insulin-Like I/metabolismo , Camundongos , Prognóstico , Receptor IGF Tipo 1 , Receptor de Insulina , Ubiquitina
4.
Biomedicines ; 10(5)2022 May 17.
Artigo em Inglês | MEDLINE | ID: mdl-35625886

RESUMO

Acquired chemoresistance of tumor cells is an unwanted consequence of cancer treatment. Overcoming chemoresistance is particularly important for efficiently improving cancer therapies. Here, using multiple lines of evidence, we report the suppressive role of SERTAD1 in apoptosis/anoikis. Among various breast cancer cell lines, higher SERTAD1 expression was found in MCF7 and MDA-MB-231 in suspension than in adherent cell culture. We revealed an unexpected phenomenon that different types of cell deaths were induced in response to different doses of doxorubicin (Dox) in breast cancer cells, presumably via lysosomal membrane permeabilization. A low dose of Dox highly activated autophagy, while a high dose of the chemotherapy induced apoptosis. Inhibition of SERTAD1 promoted the sensitivity of breast cancer cells to Dox and paclitaxel, leading to a significant reduction in tumor volumes of xenograft mice. Simultaneously targeting cancer cells with Dox and autophagy inhibition successfully induced higher apoptosis/anoikis. The novel role of SERTAD1 in maintaining cellular homeostasis has also been suggested in which lysosomal contents, including LAMP1, LAMP2, CTSB, and CTSD, were reduced in SERTAD1-deficient cells.

5.
Drug Deliv ; 29(1): 1142-1149, 2022 Dec.
Artigo em Inglês | MEDLINE | ID: mdl-35384787

RESUMO

Oral drug delivery systems (ODDSs) have various advantages of simple operation and few side effects. ODDSs are highly desirable for colon-targeted therapy (e.g. ulcerative colitis and colorectal cancer), as they improve therapeutic efficiency and reduce systemic toxicity. Chitosan/alginate nanoparticles (CANPs) show strong electrostatic interaction between the carboxyl group of alginates and the amino group of chitosan which leads to shrinkage and gel formation at low pH, thereby protecting the drugs from the gastrointestinal tract (GIT) and aggressive gastric environment. Meanwhile, CANPs as biocompatible polymer, show intestinal mucosal adhesion, which could extend the retention time of drugs on inflammatory sites. Recently, CANPs have attracted increasing interest as colon-targeted oral drug delivery system for intestinal diseases. The purpose of this review is to summarize the application and treatment of CANPs in intestinal diseases and insulin delivery. And then provide a future perspective of the potential and development direction of CANPs as colon-targeted ODDSs.


Assuntos
Quitosana , Colite Ulcerativa , Nanopartículas , Administração Oral , Alginatos , Colite Ulcerativa/tratamento farmacológico , Portadores de Fármacos/uso terapêutico , Sistemas de Liberação de Medicamentos , Humanos , Preparações Farmacêuticas
6.
Int J Mol Sci ; 22(21)2021 Oct 28.
Artigo em Inglês | MEDLINE | ID: mdl-34769090

RESUMO

GLOBOCAN 2020 estimated more than 19.3 million new cases, and about 10 million patients were deceased from cancer in 2020. Clinical manifestations showed that several growth factor receptors consisting of transmembrane and cytoplasmic tyrosine kinase (TK) domains play a vital role in cancer progression. Receptor tyrosine kinases (RTKs) are crucial intermediaries of the several cellular pathways and carcinogenesis that directly affect the prognosis and survival of higher tumor grade patients. Tyrosine kinase inhibitors (TKIs) are efficacious drugs for targeted therapy of various cancers. Therefore, RTKs have become a promising therapeutic target to cure cancer. A recent report shows that TKIs are vital mediators of signal transduction and cancer cell proliferation, angiogenesis, and apoptosis. In this review, we discuss the structure and function of RTKs to explore their prime role in cancer therapy. Various TKIs have been developed to date that contribute a lot to treating several types of cancer. These TKI based anticancer drug molecules are also discussed in detail, incorporating their therapeutic efficacy, mechanism of action, and side effects. Additionally, this article focuses on TKIs which are running in the clinical trial and pre-clinical studies. Further, to gain insight into the pathophysiological mechanism of TKIs, we also reviewed the impact of RTK resistance on TKI clinical drugs along with their mechanistic acquired resistance in different cancer types.


Assuntos
Antineoplásicos/farmacologia , Terapia de Alvo Molecular , Neoplasias/tratamento farmacológico , Proteínas Tirosina Quinases/antagonistas & inibidores , Animais , Sítios de Ligação , Ensaios Clínicos como Assunto , Avaliação Pré-Clínica de Medicamentos , Humanos , Neoplasias/enzimologia , Proteínas Tirosina Quinases/metabolismo
7.
J Agric Food Chem ; 69(33): 9597-9607, 2021 Aug 25.
Artigo em Inglês | MEDLINE | ID: mdl-34378931

RESUMO

ß-Galacto-oligosaccharide (ß-GOS) showed great potential in ulcerative colitis (UC) adjuvant therapy. Herein, the preventive and prebiotic effect of enzymatic-synthesized α-linked galacto-oligosaccharide (α-GOS) was investigated in dextran sodium sulfate-induced colitis and gut microbiota dysbiosis mice. Compared with ß-GOS, the α-GOS supplement was more effective in improving preventive efficacy, promoting colonic epithelial barrier integrity, and alleviating inflammation cytokines. Moreover, the activation of the NOD-like receptor (NLR) family member NLRP3 inflammasome-mediated inflammation was significantly inhibited by both α-GOS and ß-GOS. Gut microbiota analysis showed that α-GOS treatment reshaped the dysfunctional gut microbiota. The subsequent Spearman's correlation coefficient analysis indicated that these gut microbiota changes were significantly correlated with the inflammatory parameters. These results suggested that the enzymatic-synthesized α-GOS is a promising therapeutic agent in UC prevention and adjuvant treatment by maintaining intestinal homeostasis.


Assuntos
Colite , Microbioma Gastrointestinal , Animais , Colite/induzido quimicamente , Colite/tratamento farmacológico , Colo , Sulfato de Dextrana/toxicidade , Modelos Animais de Doenças , Disbiose/tratamento farmacológico , Camundongos , Camundongos Endogâmicos C57BL , Oligossacarídeos , Prebióticos , Sulfatos
8.
Drug Deliv ; 28(1): 1120-1131, 2021 Dec.
Artigo em Inglês | MEDLINE | ID: mdl-34121560

RESUMO

Oral route colon-targeted drug delivery systems (CDDSs) are desirable for the treatment of ulcerative colitis (UC). However, CDDSs are challenging owing to the physiological and anatomical barriers associated with the gastrointestinal tract (GIT). In this study, we developed an effective enzyme-triggered controlled release system using curcumin-cyclodextrin (CD-Cur) inclusion complex as core and low molecular weight chitosan and unsaturated alginate resulting nanoparticles (CANPs) as shell. The formed CD-Cur-CANPs showed a narrow particle-size distribution and a compact structure. In vitro drug release determination indicated that CD-Cur-CANPs showed pH-sensitive and α-amylase-responsive release characteristics. Furthermore, in vivo experiments demonstrated that oral administration of CD-Cur-CANPs had an efficient therapeutic efficacy, strong colonic biodistribution and accumulation, rapid macrophage uptake, promoted colonic epithelial barrier integrity and modulated production of inflammatory cytokines, reshaped the gut microbiota in mice with dextran sodium sulfate (DSS)-induced colitis. Taken together, our synthetic CD-Cur-CANPs are a promising synergistic colon-targeted approach for UC treatment.


Assuntos
Colite/tratamento farmacológico , Curcumina/farmacologia , Nanopartículas/química , Administração Oral , Alginatos/química , Animais , Química Farmacêutica , Quitosana/química , Curcumina/administração & dosagem , Curcumina/efeitos adversos , Citocinas/efeitos dos fármacos , Preparações de Ação Retardada , Sulfato de Dextrana/farmacologia , Modelos Animais de Doenças , Portadores de Fármacos/química , Liberação Controlada de Fármacos , Concentração de Íons de Hidrogênio , Macrófagos/efeitos dos fármacos , Masculino , Camundongos , Camundongos Endogâmicos C57BL , Tamanho da Partícula , beta-Ciclodextrinas/química
9.
Food Chem ; 339: 128027, 2021 Mar 01.
Artigo em Inglês | MEDLINE | ID: mdl-32949915

RESUMO

κ-Carrageenase cleaves the ß-(1-4) linkages of κ-carrageenan into κ-carrageenan oligosaccharides (κ-COS), which exhibit various biological activities. In this study, a glycoside hydrolase (GH) family 16 κ-carrageenase gene, cgkA, was cloned from the marine bacterium Vibrio sp. SY01 and secretory expressed in a food-grade host, Yarrowia lipolytica. The specific activity of the purified CgkA was 12.5 U/mg. Determination of biochemical properties showed that CgkA was a thermo-tolerant enzyme, and 59.9% of the initial enzyme activity was recovered by immediately placing the sample at 20 °C for 30 min after enzymatic inactivation by boiling for 5 min. The recombinant CgkA was an endo-type enzyme, the main enzymatic product was κ-carradiaose (accounting for 87.6% of total products), and κ-carratetraose was the minimum substrate. Additionally, in vitro and in vivo analyses indicated that enzymatic κ-carradiaose possesses anti-oxidant activity. These features make CgkA as a promising candidate for biotechnological applications in the production of anti-oxidant κ-COS.


Assuntos
Antioxidantes/química , Antioxidantes/farmacologia , Proteínas de Bactérias/metabolismo , Glicosídeo Hidrolases/metabolismo , Proteínas de Bactérias/química , Proteínas de Bactérias/genética , Células CACO-2 , Carragenina/química , Carragenina/metabolismo , Glicosídeo Hidrolases/química , Glicosídeo Hidrolases/genética , Humanos , Hidrólise , Simulação de Acoplamento Molecular , Oligossacarídeos/química , Proteínas Recombinantes/química , Proteínas Recombinantes/genética , Proteínas Recombinantes/metabolismo , Vibrio/genética , Yarrowia/genética
10.
Mol Ther Oncolytics ; 19: 105-126, 2020 Dec 16.
Artigo em Inglês | MEDLINE | ID: mdl-33102693

RESUMO

TRIP-Brs, a group of transcription factors (TFs) that modulate several mechanisms in higher organisms. However, the novel paradigm to target TRIP-Brs in specific cancer remains to be deciphered. In particular, comprehensive analysis of TRIP-Brs in clinicopathological and patients' prognosis, especially in breast cancer (BRCA), is being greatly ignored. Therefore, we explored the key roles of TRIP-Br expression, modulatory effects, mutations, immune infiltration, and prognosis in BRCA using multidimensional approaches. We found elevated levels of TRIP-Brs in numerous cancer tissues than normal. Higher expression of TRIP-Br-2/4/5 was shown to be positively associated with lower survival, tumor grade, and malignancy of patients with BRCA. Additionally, higher TRIP-Br-3/4 were also significantly linked with worse/short survival of BRCA patients. TRIP-Br-1/4/5 were significantly overexpressed and enhanced tumorigenesis in large-scale BRCA datasets. The mRNA levels of TRIP-Brs have been also correlated with tumor immune infiltrate in BRCA patients. In addition, TRIP-Brs synergistically play a pivotal role in central carbon metabolism, cancer-associated pathways, cell cycle, and thyroid hormone signaling, which evoke that TRIP-Brs may be a potential target for the therapy of BRCA. Thus, this investigation may lay a foundation for further research on TRIP-Br-mediated management of BRCA.

11.
Front Microbiol ; 11: 316, 2020.
Artigo em Inglês | MEDLINE | ID: mdl-32210931

RESUMO

Oligoalginate lyases catalyze the degradation of alginate polymers and oligomers into monomers, a prerequisite for biotechnological utilizing alginate. In this study, we report the cloning, expression and biochemical characterization of a new polysaccharide lyase (PL) family 17 oligoalginate lyase, OalV17, from the marine bacterium Vibrio sp. SY01. The recombinant OalV17 showed metal ion independent and detergent resistant properties. Furthermore, OalV17 is an exo-type enzyme that yields alginate monomers as the main product and recognizes alginate disaccharides as the minimal substrate. Site-directed mutagenesis followed by kinetic analysis indicates that the residue Arg231 plays a key role in substrate specificity. Furthermore, a rapid and efficient alginate monomer-producing method was developed directly from Laminaria japonica. These results suggest that OalV17 is a potential candidate for saccharification of alginate.

12.
Mol Cells ; 43(3): 236-250, 2020 Mar 31.
Artigo em Inglês | MEDLINE | ID: mdl-32050753

RESUMO

Currently, many available anti-cancer therapies are targeting apoptosis. However, many cancer cells have acquired resistance to apoptosis. To overcome this problem, simultaneous induction of other types of programmed cell death in addition to apoptosis of cancer cells might be an attractive strategy. For this purpose, we initially investigated the inhibitory role of TRIP-Br1/XIAP in necroptosis, a regulated form of necrosis, under nutrient/serum starvation. Our data showed that necroptosis was significantly induced in all tested 9 different types of cancer cell lines in response to prolonged serum starvation. Among them, necroptosis was induced at a relatively lower level in MCF-7 breast cancer line that was highly resistant to apoptosis than that in other cancer cell lines. Interestingly, TRIP-Br1 oncogenic protein level was found to be very high in this cell line. Upregulated TRIP-Br1 suppressed necroptosis by repressing reactive oxygen species generation. Such suppression of necroptosis was greatly enhanced by XIAP, a potent inhibitor of apoptosis. Our data also showed that TRIP-Br1 increased XIAP phosphorylation at serine87, an active form of XIAP. Our mitochondrial fractionation data revealed that TRIPBr1 protein level was greatly increased in the mitochondria upon serum starvation. It suppressed the export of CypD, a vital regulator in mitochondria-mediated necroptosis, from mitochondria to cytosol. TRIP-Br1 also suppressed shikoninmediated necroptosis, but not TNF-α-mediated necroptosis, implying possible presence of another signaling pathway in necroptosis. Taken together, our results suggest that TRIPBr1/XIAP can function as onco-proteins by suppressing necroptosis of cancer cells under nutrient/serum starvation.


Assuntos
Neoplasias/metabolismo , Nutrientes/deficiência , Fatores de Transcrição/metabolismo , Proteínas Inibidoras de Apoptose Ligadas ao Cromossomo X/metabolismo , Células A549 , Apoptose/fisiologia , Linhagem Celular Tumoral , Técnicas de Silenciamento de Genes , Células HCT116 , Humanos , Células MCF-7 , Necroptose/fisiologia , Neoplasias/patologia , Fatores de Transcrição/deficiência , Fatores de Transcrição/genética
13.
Int J Mol Sci ; 20(18)2019 Sep 14.
Artigo em Inglês | MEDLINE | ID: mdl-31540110

RESUMO

Bacterial biofilm causes severe antibiotic resistance. An extracellular polymeric substance (EPS) is the main component in the bacterial biofilm. Alginate is a key EPS component in the biofilm of Pseudomonas aeruginosa and responsible for surface adhesion and stabilization of biofilm. Alginate lyase has emerged as an efficient therapeutic strategy targeting to degrade the alginate in the biofilm of P. aeruginosa. However, the application of this enzyme is limited by its poor stability. In this study, chitosan nanoparticles (CS-NPs) were synthesized using low molecular weight chitosan and alginate lyase Aly08 was immobilized on low molecular weight chitosan nanoparticles (AL-LMW-CS-NPs). As a result, the immobilization significantly enhanced the thermal stability and reusability of Aly08. In addition, compared with free Aly08, the immobilized AL-LMW-CS-NPs exhibited higher efficiency in inhibiting biofilm formation and interrupting the established mature biofilm of P. aeruginosa, which could reduce its biomass and thickness confirmed by confocal microscopy. Moreover, the biofilm disruption greatly increased the antibiotic sensitivity of P. aeruginosa. This research will contribute to the further development of alginate lyase as an anti-biofilm agent.


Assuntos
Alginatos/química , Biofilmes/efeitos dos fármacos , Quitosana/química , Nanopartículas/química , Polissacarídeo-Liases/farmacologia , Pseudomonas aeruginosa/efeitos dos fármacos , Antibacterianos/farmacologia , Resistência Microbiana a Medicamentos , Estabilidade Enzimática , Enzimas Imobilizadas/química , Enzimas Imobilizadas/metabolismo , Enzimas Imobilizadas/farmacologia , Matriz Extracelular de Substâncias Poliméricas/química , Peso Molecular , Nanopartículas/ultraestrutura , Polissacarídeo-Liases/química , Polissacarídeo-Liases/metabolismo , Temperatura
14.
Cancers (Basel) ; 11(9)2019 Aug 25.
Artigo em Inglês | MEDLINE | ID: mdl-31450709

RESUMO

Lung cancer is a type of deadly cancer and a leading cause of cancer associated death worldwide. BCL-2 protein is considered as an imperative target for the treatment of cancer due to their significant involvement in cell survival and death. A carbazole-piperazine hybrid molecule ECPU-0001 was designed and synthesized as a potent BCL-2 targeting agent with effective anticancer cancer activity. Interaction of ECPU-001 has been assessed by docking, molecular dynamics (MD) simulation, and thermal shift assay. Further, in vitro and in vivo anticancer activity was executed by cytotoxicity assay, FACS, colony formation and migration assay, western blotting, immunocyto/histochemistry and xenograft nude mice model. Molecular docking and MD simulation study confirmed that ECPU-0001 nicely interacts with the active site of BCL-2 by displaying a Ki value of 5.72 µM and binding energy (ΔG) of -8.35 kcal/mol. Thermal shift assay also validated strong interaction of this compound with BCL-2. ECPU-0001 effectively exerted a cytotoxic effect against lung adenocarnoma cells A459 with an IC50 value of 1.779 µM. Molecular mechanism of action have also been investigated and found that ECPU-0001 induced apoptosis in A459 cell by targeting BCL-2 to induce intrinsic pathway of apoptosis. Administration of ECPU-0001 significantly inhibited progression of tumor in a xenograft model without exerting severe toxicity and remarkably reduced tumor volume as well as tumor burden in treated animals. Our investigation bestowed ECPU-0001 as an effective tumoricidal agent which exhibited impressive anticancer activity in vitro as well as in vivo by targeting BCL-2 associated intrinsic pathway of apoptosis. Thus, ECPU-0001 may provide a valuable input for therapy of lung adenosarcoma in future, however, further extensive investigation of this compound will be needed.

15.
Cancers (Basel) ; 11(3)2019 Mar 08.
Artigo em Inglês | MEDLINE | ID: mdl-30857225

RESUMO

SERTAD/TRIP-Br genes are considered as a key nuclear transcriptional player in diverse mechanisms of cell including carcinogenesis. The Oncomine™-Online Platform was used for differential expression and biological insights. Kaplan-Meier survival estimated by KM-plotter/cBioPortal/PrognoScan with 95% CI. SERTAD1 was found significantly elevated levels in most of tumor samples. Kaplan-Meier Plotter results distinctly showed the SERTAD1 over-expression significantly reduced median overall-survival (OS) of patients in liver (n = 364/Logrank-test p = 0.0015), ovarian (n = 655/Logrank-test p = 0.00011) and gastric (n = 631/Logrank-test p = 0.1866). Increased level of SERTAD1 has a significantly higher survival rate in the initial time period, but after 100 months slightly reduced OS (n = 26/Logrank-test p = 0.34) and RFS in HER2 positive breast cancer patients. In meta-analysis, cancer patients with higher SERTAD1 mRNA fold resulted worse overall survival than those with lower SERTAD1 levels. Heterogeneity was observed in the fixed effect model analysis DFS [Tau² = 0.0.073, Q (df = 4) = 15.536 (p = 0.004), I² = 74.253], DSS [Tau² = 1.015, Q (df = 2) = 33.214, (p = 0.000), I² = 93.973], RFS [Tau² = 0.492, Q (df = 7) = 71.133 (p = 0.000), I² = 90.159] (Figure 5). OS [Tau² = 0.480, Q (df = 17) = 222.344 (p = 0.000), I² = 92.354]. Lastly, SERTAD1 involved in several signaling cascades through interaction and correlation with many candidate factors as well as miRNAs. This meta-analysis demonstrates a robust evidence of an association between higher or lower SERTAD1, alteration and without alteration of SERTAD1 in cancers in terms of survival and cancer invasiveness.

16.
Oncol Rep ; 41(1): 711-717, 2019 Jan.
Artigo em Inglês | MEDLINE | ID: mdl-30542721

RESUMO

In attempting to identify effective anticancer drugs from natural products that are harmless to humans, we found that the gomisin J from Schisandra chinensis fruit has anticancer activity. Schisandra chinensis fruits are used in traditional herbal medicine and gomisin J is one of their chemical constituents. In the present study, we examined the anticancer activity of gomisin J in MCF7 and MDA-MB-231 breast cancer cell lines and in MCF10A normal cell line, in a time- and concentration-dependent manner. Our data revealed that gomisin J exerted a much stronger cytotoxic effect on MCF7 and MDA-MB-231 cancer cells than on MCF10A normal cells. Gomisin J suppressed the proliferation and decreased the viability of MCF7 and MDA-MB-231 cells at relatively low (<10 µg/ml) and high (>30 µg/ml) concentrations, respectively. Our data also revealed that gomisin J induced necroptosis, a programmed form of necrosis, as well as apoptosis. Notably, gomisin J predominantly induced necroptosis in MCF7 cells that are known to have high resistance to many pro-apoptotic anticancer drugs, while MDA-MB-231 exhibited a much lower level of necroptosis but instead a higher level of apoptosis. This data indicated the possibility that it may be used as a more effective anticancer drug, especially in apoptosis-resistant malignant cancer cells. In an extended study, gomisin J exhibited a strong cytotoxic effect on all tested various types of 13 cancer cell lines, indicating its potential to be used against a wide range of different types of cancer cells.


Assuntos
Lignanas/farmacologia , Neoplasias/tratamento farmacológico , Compostos Policíclicos/farmacologia , Schisandra/química , Apoptose/efeitos dos fármacos , Linhagem Celular Tumoral , Proliferação de Células/efeitos dos fármacos , Ensaios de Seleção de Medicamentos Antitumorais , Frutas/química , Humanos , Lignanas/uso terapêutico , Compostos Policíclicos/uso terapêutico
17.
Int J Oncol ; 54(2): 702-712, 2019 02.
Artigo em Inglês | MEDLINE | ID: mdl-30431068

RESUMO

Simultaneous induction of other types of programmed cell death, alongside apoptosis, in cancer cells may be considered an attractive strategy for the development of more effective anticancer therapies. The present study aimed to investigate the role of AMP­activated protein kinase (AMPK) in nutrient/serum starvation­induced necroptosis, which is a programmed form of necrosis, in the presence or absence of p53. The present study detected higher cell proliferation and lower cell death rates in the HCT116 human colon cancer cell line containing a p53 null mutation (HCT116 p53­/­) compared with in HCT116 cells harboring wild­type p53 (HCT116 p53+/+), as determined using a cell viability assay. Notably, western blot analysis revealed a relatively lower level of necroptosis in HCT116 p53­/­ cells compared with in HCT116 p53+/+ cells. Investigating the mechanism, it was revealed that necroptosis may be induced in HCT116 p53+/+ cells by significantly increasing reactive oxygen species (ROS) and decreasing mitochondrial membrane potential (MMP), whereas little alterations were detected in HCT116 p53­/­ cells. Unexpectedly, a much lower level of ATP was detected in HCT116 p53­/­ cells compared with in HCT116 p53+/+ cells. Accordingly, AMPK phosphorylation on the Thr172 residue was markedly increased in HCT116 p53­/­ cells. Furthermore, western blot analysis and ROS measurements indicated that AMPK inhibition, using dorsomorphin dihydrochloride, accelerated necroptosis by increasing ROS generation in HCT116 p53­/­ cells. However, AMPK activation by AICAR did not suppress necroptosis in HCT116 p53+/+ cells. In conclusion, these data strongly suggested that AMPK activation may be enhanced in HCT116 p53­/­ cells under serum­depleted conditions via a drop in cellular ATP levels. In addition, activated AMPK may be at least partially responsible for the inhibition of necroptosis in HCT116 p53­/­ cells, but not in HCT116 p53+/+cells.


Assuntos
Proteínas Quinases Ativadas por AMP/genética , Neoplasias do Colo/genética , Necrose/genética , Proteína Supressora de Tumor p53/genética , Apoptose/genética , Proliferação de Células/genética , Sobrevivência Celular/genética , Neoplasias do Colo/patologia , Células HCT116 , Humanos , Mutação com Perda de Função/genética , Potencial da Membrana Mitocondrial/genética , Nutrientes/metabolismo , Espécies Reativas de Oxigênio/metabolismo
18.
Oncotarget ; 9(24): 16744-16757, 2018 Mar 30.
Artigo em Inglês | MEDLINE | ID: mdl-29682182

RESUMO

Angelica amurensis has traditionally been used to treat various medical problems. In this report, we introduce cis-khellactone as a new anti-cancer agent, which was isolated from the chloroform soluble fraction of the rhizomes of Angelica amurensis. Its anti-cancerous effect was at first tested in MCF7 and MDA-MB-231 breast cell lines, in which MCF7 is well known to be resistant to many anti-cancer drugs; MCF10A normal breast cell line was used as a control. In vitro experiments showed that cis-khellactone suppressed cell growth and proliferation at a relatively low concentrations (<5 µg/ml) and decreased cell viability at high concentrations (>10 µg/ml) in both cancer cell lines in a time- and concentration-dependent manner. This anti-cancerous effect was also checked in additional 16 different types of normal and cancer cell lines. Cis-khellactone treatment significantly suppressed cell proliferation and enhanced cell death in all tested cancer cell lines. Furthermore, Western blot analysis showed that cis-khellactone induced three types of programmed cell death (PCD): apoptosis, autophagy-mediated cell death, and necrosis/necroptosis. Cis-khellactone concentration-dependently decreased cell viability by increasing the level of reactive oxygen species (ROS) and decreasing mitochondrial membrane potential (MMP), which are related to all three types of PCD. Mitochondrial fractionation data revealed that cis-khellactone induced the translocation of BAX and BAK into mitochondria as well as the overexpression of VDAC1, which probably accelerates MMP disruption and finally cell death. Importantly, our extended in vivo studies with xenograft model further confirmed these findings of anti-cancerous effects and showed no harmful effects in normal tissues, suggesting that there would be no side effects in humans.

19.
Int J Oncol ; 48(6): 2639-46, 2016 Jun.
Artigo em Inglês | MEDLINE | ID: mdl-27035851

RESUMO

TRIP-Br1 oncoprotein is known to be involved in many vital cellular functions. In this study, we examined the role of TRIP-Br1 in hypoxia-induced cell death. Exposure to the overcrowded and CoCl2-induced hypoxic conditions increased TRIP-Br1 expression at the protein level in six breast cancer cell lines (MCF7, MDA-MB-231, T47D, Hs578D, BT549, and MDA-MB-435) but resulted in no significant change in three normal cell lines (MCF10A, MEF and NIH3T3). Our result revealed that CoCl2-induced hypoxia stimulated apoptosis and autophagy, in which TRIP-Br1 expression was found to be upregulated. Interestingly, TRIP-Br1 silencing in the MCF7 and MDA-MB-231 cancer cells accelerated apoptosis and destabilization of XIAP under the CoCl2-induced hypoxic condition, implying that TRIP-Br1 may render cancer cells resistant to apoptosis through the stabilization of XIAP. We also propose that TRIP-Br1 seems to be upregulated at least partly as a result of the inhibition of PI3K/AKT signaling pathway and the overexpression of HIF-1α. In conclusion, our findings suggest that TRIP-Br1 functions as an oncogenic protein by providing cancer cells resistance to the hypoxia-induced cell death.


Assuntos
Neoplasias da Mama/metabolismo , Cobalto/toxicidade , Regulação para Baixo , Resistencia a Medicamentos Antineoplásicos , Proteínas Nucleares/metabolismo , Transativadores/metabolismo , Animais , Apoptose , Hipóxia Celular , Linhagem Celular Tumoral , Feminino , Regulação Neoplásica da Expressão Gênica , Humanos , Células MCF-7 , Camundongos , Células NIH 3T3 , Fatores de Transcrição , Regulação para Cima , Proteínas Inibidoras de Apoptose Ligadas ao Cromossomo X/metabolismo
20.
Oncotarget ; 6(30): 29060-75, 2015 Oct 06.
Artigo em Inglês | MEDLINE | ID: mdl-26334958

RESUMO

TRIP-Br1 oncogenic protein has been shown to have multiple biological functions in cells. In this study, we demonstrate that TRIP-Br1 functions as an oncoprotein by inhibiting autophagy, apoptosis, and necroptosis of cancer cells and eventually helping them to survive under the nutrient/serum starved condition. TRIP-Br1 expression level was significantly increased in conditions with low levels of nutrients. Nutrient depleted conditions were induced by culturing cancer cells until they were overcrowded with high cell density or in media deprived of glucose, amino acids, or serum. Among them, serum starvation significantly enhanced the expression of TRIP-Br1 only in all tested breast cancer cell lines (MCF7, MDA-MB-231, T47D, MDA-MB-435, Hs578D, BT549, and MDA-MB-435) but not in the three normal cell lines (MCF10A, HfCH8, and NIH3T3). As compared with the control cells, the introduction of TRIP-Br1 silencing siRNA into MCF7 and MDA-MB-231 cells accelerated cell death by inducing apoptosis and necroptosis. In this process, TRIP-Br1 confers resistance to serum starvation-induced cell deaths by stabilizing the XIAP protein and inhibiting cellular ROS production. Moreover, our data also show that the intracellular increase of TRIP-Br1 protein resulting from serum starvation seems to occur in part through the blockage of PI3K/AKT signaling pathway.


Assuntos
Aminoácidos/deficiência , Apoptose , Autofagia , Neoplasias da Mama/metabolismo , Glucose/deficiência , Proteínas Nucleares/metabolismo , Transativadores/metabolismo , Animais , Neoplasias da Mama/genética , Neoplasias da Mama/patologia , Sobrevivência Celular , Meios de Cultura Livres de Soro/metabolismo , Feminino , Regulação Neoplásica da Expressão Gênica , Humanos , Células MCF-7 , Camundongos , Células NIH 3T3 , Necrose , Proteínas Nucleares/genética , Fosfatidilinositol 3-Quinase/metabolismo , Proteínas Proto-Oncogênicas c-akt/metabolismo , Interferência de RNA , Espécies Reativas de Oxigênio/metabolismo , Transdução de Sinais , Fatores de Tempo , Transativadores/genética , Fatores de Transcrição , Transfecção , Proteínas Inibidoras de Apoptose Ligadas ao Cromossomo X/metabolismo
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA