Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 48
Filtrar
Mais filtros








Base de dados
Intervalo de ano de publicação
1.
Crit Rev Biotechnol ; : 1-23, 2024 May 26.
Artigo em Inglês | MEDLINE | ID: mdl-38797692

RESUMO

Owing to the unmet demand, the pharmaceutical industry is investigating an alternative host to mammalian cells to produce antibodies for a variety of therapeutic and research applications. Regardless of some disadvantages, Escherichia coli and Pichia pastoris are the preferred microbial hosts for antibody production. Despite the fact that the production of full-length antibodies has been successfully demonstrated in E. coli, which has mostly been used to produce antibody fragments, such as: antigen-binding fragments (Fab), single-chain fragment variable (scFv), and nanobodies. In contrast, Pichia, a eukaryotic microbial host, is mostly used to produce glycosylated full-length antibodies, though hypermannosylated glycan is a major challenge. Advanced strategies, such as the introduction of human-like glycosylation in endotoxin-edited E. coli and cell-free system-based glycosylation, are making progress in creating human-like glycosylation profiles of antibodies in these microbes. This review begins by explaining the structural and functional requirements of antibodies and continues by describing and analyzing the potential of E. coli and P. pastoris as hosts for providing a favorable environment to create a fully functional antibody. In addition, authors compare these microbes on certain features and predict their future in antibody production. Briefly, this review analyzes, compares, and highlights E. coli and P. pastoris as potential hosts for antibody production.

2.
Adv Healthc Mater ; 13(14): e2302803, 2024 06.
Artigo em Inglês | MEDLINE | ID: mdl-38329411

RESUMO

The decreasing efficacy of antiviral drugs due to viral mutations highlights the challenge of developing a single agent targeting multiple strains. Using host cell viral receptors as competitive inhibitors is promising, but their low potency and membrane-bound nature have limited this strategy. In this study, the authors show that angiotensin-converting enzyme 2 (ACE2) in a planar membrane patch can effectively neutralize all tested severe acute respiratory syndrome coronavirus 2 (SARS-CoV-2) variants that emerged during the COVID-19 pandemic. The ACE2-incorporated membrane patch implemented using nanodiscs replicated the spike-mediated membrane fusion process outside the host cell, resulting in virus lysis, extracellular RNA release, and potent antiviral activity. While neutralizing antibodies became ineffective as the SARS-CoV-2 evolved to better penetrate host cells the ACE2-incorporated nanodiscs became more potent, highlighting the advantages of using receptor-incorporated nanodiscs for antiviral purposes. ACE2-incorporated immunodisc, an Fc fusion nanodisc developed in this study, completely protected humanized mice infected with SARS-CoV-2 after prolonged retention in the airways. This study demonstrates that the incorporation of viral receptors into immunodisc transforms the entry gate into a potent virucide for all current and future variants, a concept that can be extended to different viruses.


Assuntos
Enzima de Conversão de Angiotensina 2 , Anticorpos Neutralizantes , COVID-19 , SARS-CoV-2 , Animais , Enzima de Conversão de Angiotensina 2/metabolismo , Enzima de Conversão de Angiotensina 2/química , Humanos , Camundongos , COVID-19/virologia , Anticorpos Neutralizantes/imunologia , Anticorpos Neutralizantes/farmacologia , Antivirais/farmacologia , Antivirais/química , Glicoproteína da Espícula de Coronavírus/metabolismo , Glicoproteína da Espícula de Coronavírus/imunologia , Glicoproteína da Espícula de Coronavírus/química , Chlorocebus aethiops , Células Vero , Internalização do Vírus/efeitos dos fármacos , Células HEK293 , Anticorpos Antivirais/imunologia
3.
Sci Rep ; 13(1): 18275, 2023 10 25.
Artigo em Inglês | MEDLINE | ID: mdl-37880350

RESUMO

Complement-dependent cytotoxicity (CDC), which eliminates aberrant target cells through the assembly and complex formation of serum complement molecules, is one of the major effector functions of anticancer therapeutic antibodies. In this study, we discovered that breaking the symmetry of natural immunoglobulin G (IgG) antibodies significantly increased the CDC activity of anti-CD20 antibodies. In addition, the expression of CD55 (a checkpoint inhibitor in the CDC cascade) was significantly increased in a rituximab-resistant cell line generated in-house, suggesting that CD55 overexpression might be a mechanism by which cancer cells acquire rituximab resistance. Based on these findings, we developed an asymmetric bispecific antibody (SBU-CD55 × CD20) that simultaneously targets both CD55 and CD20 to effectively eliminate rituximab-resistant cancer cells. In various cancer cell lines, including rituximab-resistant lymphoma cells, the SBU-CD55 × CD20 antibody showed significantly higher CDC activity than either anti-CD20 IgG antibody alone or a combination of anti-CD20 IgG antibody and anti-CD55 IgG antibody. Furthermore, the asymmetric bispecific antibody (SBU-CD55 × CD20) exhibited significantly higher CDC activity against rituximab-resistant cancer cells compared to other bispecific antibodies with symmetric features. These results demonstrate that enhancing CDC with an asymmetric CD55-binding bispecific antibody could be a new strategy for developing therapeutics to treat patients with relapsed or refractory cancers.


Assuntos
Anticorpos Biespecíficos , Antineoplásicos , Humanos , Rituximab/farmacologia , Imunoglobulina G , Anticorpos Monoclonais Murinos/farmacologia , Antígenos CD20 , Antígenos CD55/metabolismo , Antineoplásicos/farmacologia , Antineoplásicos/uso terapêutico , Anticorpos Biespecíficos/farmacologia , Linhagem Celular Tumoral , Citotoxicidade Celular Dependente de Anticorpos
4.
BioDrugs ; 37(5): 637-648, 2023 Sep.
Artigo em Inglês | MEDLINE | ID: mdl-37486566

RESUMO

The complement system is a crucial part of the innate immune response, providing defense against invading pathogens and cancer cells. Recently, it has become evident that the complement system plays a significant role in anticancer activities, particularly through complement-dependent cytotoxicity (CDC), alongside antibody-dependent cell-mediated cytotoxicity (ADCC) and antibody-dependent cell-mediated phagocytosis (ADCP). With the discovery of new roles for serum complement molecules in the human immune system, various approaches are being pursued to develop CDC-enhanced antibody therapeutics. In this review, we focus on successful antibody engineering strategies for enhancing CDC, analyzing the lessons learned and the limitations of each approach. Furthermore, we outline potential pathways for the development of antibody therapeutics specifically aimed at enhancing CDC for superior therapeutic efficacy in the future.


Assuntos
Anticorpos Monoclonais , Neoplasias , Humanos , Anticorpos Monoclonais/uso terapêutico , Citotoxicidade Celular Dependente de Anticorpos , Neoplasias/tratamento farmacológico
5.
Fish Shellfish Immunol ; 138: 108807, 2023 Jul.
Artigo em Inglês | MEDLINE | ID: mdl-37169112

RESUMO

The COVID-19 pandemic has significantly impacted human health for three years. To mitigate the spread of SARS-CoV-2, the development of neutralizing antibodies has been accelerated, including the exploration of alternative antibody formats such as single-domain antibodies. In this study, we identified variable new antigen receptors (VNARs) specific for the receptor binding domain (RBD) of SARS-CoV-2 by immunizing a banded houndshark (Triakis scyllium) with recombinant wild-type RBD. Notably, the CoV2NAR-1 clone showed high binding affinities in the nanomolar range to various RBDs and demonstrated neutralizing activity against SARS-CoV-2 pseudoviruses. These results highlight the potential of the banded houndshark as an animal model for the development of VNAR-based therapeutics or diagnostics against future pandemics.


Assuntos
COVID-19 , Anticorpos de Domínio Único , Humanos , Animais , SARS-CoV-2/metabolismo , Anticorpos Antivirais , Pandemias , Anticorpos Neutralizantes
6.
Mol Pharm ; 20(4): 2170-2180, 2023 04 03.
Artigo em Inglês | MEDLINE | ID: mdl-36897183

RESUMO

Although therapeutic immunoglobulin G (IgG) antibodies that regulate the activity of immune checkpoints bring innovation to the field of immuno-oncology, they are still limited in their efficiency to infiltrate the tumor microenvironment due to their large molecular size (150 kDa) and the necessity of additional engineering works to ablate effector functions for antibodies targeting immune cells. To address these issues, the human PD-1 (hPD-1) ectodomain, a small protein moiety of 14-17 kDa, has been considered as a therapeutic agent. Here, we used bacterial display-based high-throughput directed evolution to successfully isolate glycan-controlled (aglycosylated or only single-N-linked glycosylated) human PD-1 variants exhibiting over 1000-fold increased hPD-L1 binding affinity compared to that of wild-type hPD-1. The resulting hPD-1 variants, aglycosylated JYQ12 and JYQ12-2 with a single-N-linked glycan chain, showed exceptionally high binding affinity to hPD-L1 and very high affinity to both hPD-L2 and mPD-L1. Moreover, the JYQ12-2 efficiently potentiated the proliferation of human T cells. hPD-1 variants with significantly improved binding affinities for hPD-1 ligands could be used as effective therapeutics or diagnostics that can be differentiated from large-sized IgG antibody-based molecules.


Assuntos
Neoplasias , Linfócitos T , Humanos , Linfócitos T/metabolismo , Receptor de Morte Celular Programada 1/metabolismo , Neoplasias/metabolismo , Microambiente Tumoral
7.
Mol Pharm ; 20(2): 1247-1255, 2023 02 06.
Artigo em Inglês | MEDLINE | ID: mdl-36563318

RESUMO

Endothelin receptor A (ETA), a class A G protein-coupled receptor (GPCR), is a promising tumor-associated antigen due to its close association with the progression and metastasis of many types of cancer, such as colorectal, breast, lung, ovarian, and prostate cancer. However, only small-molecule drugs have been developed as ETA antagonists with anticancer effects. In a previous study, we identified an antibody (AG8) with highly selective binding to human ETA through screening of a human naïve immune antibody library. Although both in vitro and in vivo experiments indicated that the identified AG8 had anticancer effects, there is a need for improvement in biochemical and physicochemical properties such as the ETA binding affinity, thermostability, and productivity. In this study, we engineered the framework regions of AG8 and isolated an anti-ETA antibody (MJF1) exhibiting significantly improved thermostability and ETA binding affinity. Subsequently, our previously isolated PFc29, an Fc variant with an enhanced pH-dependent human FcRn binding profile, was introduced to MJF1, and the resulting Fc-engineered anti-ETA antibody (MJF1-PFc29) inhibited the proliferation of tumor cells comparably to MJF1 and showed a 4.2-fold increased serum half-life in human FcRn transgenic mice. Moreover, MJF1-PFc29 elicited higher tumor growth inhibition in colorectal cancer xenograft mice compared to MJF1. Our results demonstrate that the engineered human anti-ETA antibody MJF1-PFc29 has great therapeutic potential and high antitumor potency against various types of cancers including colorectal cancer.


Assuntos
Neoplasias Colorretais , Engenharia de Proteínas , Masculino , Humanos , Camundongos , Animais , Receptores Fc/metabolismo , Camundongos Transgênicos , Receptor de Endotelina A , Neoplasias Colorretais/tratamento farmacológico
8.
Bioengineering (Basel) ; 9(11)2022 Nov 10.
Artigo em Inglês | MEDLINE | ID: mdl-36354581

RESUMO

A new severe acute respiratory syndrome coronavirus 2 (SARS-CoV-2) variant known as Omicron has caused a rapid increase in recent global patients with coronavirus infectious disease 2019 (COVID-19). To overcome the COVID-19 Omicron variant, production of a recombinant spike receptor binding domain (RBD) is vital for developing a subunit vaccine or a neutralizing antibody. Although bacterial expression has many advantages in the production of recombinant proteins, the spike RBD expressed in a bacterial system experiences a folding problem related to disulfide bond formation. In this study, the soluble Omicron RBD was obtained by a disulfide isomerase-assisted periplasmic expression system in Escherichia coli. The Omicron RBD purified from E. coli was very well recognized by anti-SARS-CoV-2 antibodies, sotrovimab (S309), and CR3022, which were previously reported to bind to various SARS-CoV-2 variants. In addition, the kinetic parameters of the purified Omicron RBD upon binding to the human angiotensin-converting enzyme 2 (ACE2) were similar to those of the Omicron RBD produced in the mammalian expression system. These results suggest that an E. coli expression system would be suitable to produce functional and correctly folded spike RBDs of the next emerging SARS-CoV-2 variants quickly and inexpensively.

9.
Exp Mol Med ; 54(11): 1850-1861, 2022 11.
Artigo em Inglês | MEDLINE | ID: mdl-36319752

RESUMO

The pH-selective interaction between the immunoglobulin G (IgG) fragment crystallizable region (Fc region) and the neonatal Fc receptor (FcRn) is critical for prolonging the circulating half-lives of IgG molecules through intracellular trafficking and recycling. By using directed evolution, we successfully identified Fc mutations that improve the pH-dependent binding of human FcRn and prolong the serum persistence of a model IgG antibody and an Fc-fusion protein. Strikingly, trastuzumab-PFc29 and aflibercept-PFc29, a model therapeutic IgG antibody and an Fc-fusion protein, respectively, when combined with our engineered Fc (Q311R/M428L), both exhibited significantly higher serum half-lives in human FcRn transgenic mice than their counterparts with wild-type Fc. Moreover, in a cynomolgus monkey model, trastuzumab-PFc29 displayed a superior pharmacokinetic profile to that of both trastuzumab-YTE and trastuzumab-LS, which contain the well-validated serum half-life extension Fcs YTE (M252Y/S254T/T256E) and LS (M428L/N434S), respectively. Furthermore, the introduction of two identified mutations of PFc29 (Q311R/M428L) into the model antibodies enhanced both complement-dependent cytotoxicity and antibody-dependent cell-mediated cytotoxicity activity, which are triggered by the association between IgG Fc and Fc binding ligands and are critical for clearing cancer cells. In addition, the effector functions could be turned off by combining the two mutations of PFc29 with effector function-silencing mutations, but the antibodies maintained their excellent pH-dependent human FcRn binding profile. We expect our Fc variants to be an excellent tool for enhancing the pharmacokinetic profiles and potencies of various therapeutic antibodies and Fc-fusion proteins.


Assuntos
Antígenos de Histocompatibilidade Classe I , Imunoglobulina G , Camundongos , Animais , Humanos , Imunoglobulina G/genética , Imunoglobulina G/metabolismo , Macaca fascicularis/metabolismo , Meia-Vida , Antígenos de Histocompatibilidade Classe I/genética , Antígenos de Histocompatibilidade Classe I/química , Antígenos de Histocompatibilidade Classe I/metabolismo , Camundongos Transgênicos , Mutação , Trastuzumab/uso terapêutico , Trastuzumab/genética
10.
Sci Adv ; 8(43): eabq6207, 2022 10 28.
Artigo em Inglês | MEDLINE | ID: mdl-36288301

RESUMO

The frequent occurrence of viral variants is a critical problem in developing antiviral prophylaxis and therapy; along with stronger recognition of host cell receptors, the variants evade the immune system-based vaccines and neutralizing agents more easily. In this work, we focus on enhanced receptor binding of viral variants and demonstrate generation of receptor-mimicking synthetic reagents, capable of strongly interacting with viruses and their variants. The hotspot interaction of viruses with receptor-derived short peptides is maximized by aptamer-like scaffolds, the compact and stable architectures of which can be in vitro selected from a myriad of the hotspot peptide-coupled random nucleic acids. We successfully created the human angiotensin-converting enzyme 2 (hACE2) receptor-mimicking hybrid ligand that recruits the hACE2-derived receptor binding domain-interacting peptide to directly interact with a binding hotspot of severe acute respiratory syndrome coronavirus 2 (SARS-CoV-2). Experiencing affinity boosting by ~500% to Omicron, the de novo selected hACE2 mimic exhibited a great binding tolerance to all SARS-CoV-2 variants of concern.


Assuntos
COVID-19 , Ácidos Nucleicos , Humanos , Enzima de Conversão de Angiotensina 2/genética , SARS-CoV-2/genética , Glicoproteína da Espícula de Coronavírus/genética , Glicoproteína da Espícula de Coronavírus/metabolismo , Ligantes , Receptores Virais/metabolismo , Peptidil Dipeptidase A/metabolismo , Ligação Proteica , Peptídeos/metabolismo , Antivirais
11.
Nat Commun ; 13(1): 2127, 2022 04 19.
Artigo em Inglês | MEDLINE | ID: mdl-35440620

RESUMO

Immunotherapy has emerged as a powerful approach to cancer treatment. However, immunotherapeutic resistance limits its clinical application. Therefore, identifying immune-resistant factors, which can be targeted by clinically available drugs and it also can be a companion diagnostic marker, is needed to develop combination strategies. Here, using the transcriptome data of patients, and immune-refractory tumor models, we identify TCTP as an immune-resistance factor that correlates with clinical outcome of anti-PD-L1 therapy and confers immune-refractory phenotypes, decreased T cell trafficking to the tumor and resistance to cytotoxic T lymphocyte-mediated tumor cell killing. Mechanistically, TCTP activates the EGFR-AKT-MCL-1/CXCL10 pathway by phosphorylation-dependent interaction with Na, K ATPase. Furthermore, treatment with dihydroartenimsinin, the most effective agent impending the TCTP-mediated-refractoriness, synergizes with T cell-mediated therapy to control immune-refractory tumors. Thus, our findings suggest a role of TCTP in promoting immune-refractoriness, thereby encouraging a rationale for combination therapies to enhance the efficacy of T cell-mediated therapy.


Assuntos
Antígeno B7-H1 , Imunoterapia , Linhagem Celular Tumoral , Terapia Combinada , Humanos , Fenótipo , Microambiente Tumoral
12.
Exp Mol Med ; 53(9): 1437-1448, 2021 09.
Artigo em Inglês | MEDLINE | ID: mdl-34588605

RESUMO

Endothelin receptor A (ETA), a class A G-protein-coupled receptor (GPCR), is involved in the progression and metastasis of colorectal, breast, lung, ovarian, and prostate cancer. We overexpressed and purified human endothelin receptor type A in Escherichia coli and reconstituted it with lipid and membrane scaffold proteins to prepare an ETA nanodisc as a functional antigen with a structure similar to that of native GPCR. By screening a human naive immune single-chain variable fragment phage library constructed in-house, we successfully isolated a human anti-ETA antibody (AG8) exhibiting high specificity for ETA in the ß-arrestin Tango assay and effective inhibitory activity against the ET-1-induced signaling cascade via ETA using either a CHO-K1 cell line stably expressing human ETA or HT-29 colorectal cancer cells, in which AG8 exhibited IC50 values of 56 and 51 nM, respectively. In addition, AG8 treatment repressed the transcription of inhibin ßA and reduced the ETA-induced phosphorylation of protein kinase B and extracellular regulated kinase. Furthermore, tumor growth was effectively inhibited by AG8 in a colorectal cancer mouse xenograft model. The human anti-ETA antibody isolated in this study could be used as a potential therapeutic for cancers, including colorectal cancer.


Assuntos
Anticorpos Monoclonais/farmacologia , Antineoplásicos Imunológicos/farmacologia , Antagonistas do Receptor de Endotelina A/farmacologia , Receptor de Endotelina A/imunologia , Animais , Anticorpos Monoclonais/química , Anticorpos Monoclonais/imunologia , Antineoplásicos Imunológicos/química , Células CHO , Linhagem Celular Tumoral , Cricetulus , Modelos Animais de Doenças , Relação Dose-Resposta a Droga , Antagonistas do Receptor de Endotelina A/química , Ensaio de Imunoadsorção Enzimática , Humanos , Camundongos , Engenharia de Proteínas , Ensaios Antitumorais Modelo de Xenoenxerto
13.
Front Neuroendocrinol ; 63: 100942, 2021 10.
Artigo em Inglês | MEDLINE | ID: mdl-34437871

RESUMO

Oxytocin and vasopressin are neurohypophyseal hormones with sequence similarity and play a central role in bodily homeostatic regulation. Pain is currently understood to be an important phenotype that those two neurohormones strongly downregulate. Nociceptors, the first component of the ascending neural circuit for pain signals, have constantly been shown to be modulated by those peptides. The nociceptor modulation appears to be critical in pain attenuation, which has led to a gradual increase in scientific interest about their physiological processes and also drawn attention to their translational potentials. This review focused on what are recently understood and stay under investigation in the functional modulation of nociceptors by oxytocin and vasopressin. Effort to produce a nociceptor-specific view could help to construct a more systematic picture of the peripheral pain modulation by oxytocin and vasopressin.


Assuntos
Nociceptores , Ocitocina , Humanos , Dor , Receptores de Ocitocina , Receptores de Vasopressinas , Vasopressinas
14.
J Mater Chem B ; 9(30): 6092, 2021 Aug 04.
Artigo em Inglês | MEDLINE | ID: mdl-34312646

RESUMO

Correction for 'A short PEG linker alters the in vivo pharmacokinetics of trastuzumab to yield high-contrast immuno-PET images' by Woonghee Lee et al., J. Mater. Chem. B, 2021, 9, 2993-2997, DOI: 10.1039/D0TB02911D.

15.
Front Microbiol ; 12: 655072, 2021.
Artigo em Inglês | MEDLINE | ID: mdl-33790884

RESUMO

Protein production requires a significant amount of intracellular energy. Eliminating the flagella has been proposed to help Escherichia coli improve protein production by reducing energy consumption. In this study, the gene encoding a subunit of FlhC, a master regulator of flagella assembly, was deleted to reduce the expression of flagella-related genes. FlhC knockout in the ptsG-deleted strain triggered significant growth retardation with increased ATP levels and a higher NADPH/NADP+ ratio. Metabolic flux analysis using a 13C-labeled carbon substrate showed increased fluxes toward the pentose phosphate and tricarboxylic acid cycle pathways in the flhC- and ptsG-deleted strains. Introduction of a high copy number plasmid or overexpression of the recombinant protein in this strain restored growth rate without increasing glucose consumption. These results suggest that the metabolic burden caused by flhC deletion was resolved by recombinant protein production. The recombinant enhanced green fluorescent protein yield per glucose consumption increased 1.81-fold in the flhC mutant strain. Thus, our study demonstrates that high-yield production of the recombinant protein was achieved with reduced flagella formation.

16.
J Mater Chem B ; 9(13): 2993-2997, 2021 04 07.
Artigo em Inglês | MEDLINE | ID: mdl-33725072

RESUMO

The prolonged blood circulation of the radiolabeled antibody conjugates is problematic when using immuno-PET imaging due to the increased radiation exposure and longer hospitalization required until sufficient contrast develops. In contrast to the prevailing belief that PEGylation prolongs blood retention time, we observed that a PEGylated antibody with a short PEG8 linker cleared much faster from the blood while maintaining tumor uptake compared to its non-PEGylated counterpart. Breast tumors were clearly visualized with a very high tumor-to-background ratio as early as 24 h after injection in immuno-positron emission tomography (PET) imaging.


Assuntos
Antineoplásicos Imunológicos/farmacocinética , Neoplasias da Mama/diagnóstico por imagem , Polietilenoglicóis/química , Tomografia por Emissão de Pósitrons , Compostos Radiofarmacêuticos/farmacocinética , Trastuzumab/farmacocinética , Antineoplásicos Imunológicos/química , Neoplasias da Mama/metabolismo , Feminino , Humanos , Compostos Radiofarmacêuticos/química , Trastuzumab/química
17.
BioDrugs ; 35(2): 147-157, 2021 Mar.
Artigo em Inglês | MEDLINE | ID: mdl-33608823

RESUMO

Association of FcRn molecules to the Fc region of IgG in acidified endosomes and subsequent dissociation of the interaction in neutral pH serum enables IgG molecules to be recycled for prolonged serum persistence after internalization by endothelial cells, rather than being degraded in the serum and in the lysosomes inside the cells. Exploiting this intracellular trafficking and recycling mechanism, many researchers have engineered the Fc region to further extend the serum half-lives of therapeutic antibodies by optimizing the pH-dependent IgG Fc-FcRn interaction, and have generated various Fc variants exhibiting significantly improved circulating half-lives of therapeutic IgG antibodies. In order to estimate pharmacokinetic profiles of IgG Fc variants in human serum, not only a variety of in vitro techniques to determine the equilibrium binding constants and instantaneous rate constants for pH-dependent FcRn binding, but also diverse in vivo animal models including wild-type mouse, human FcRn transgenic mouse (Tg32 and Tg276), humanized mouse (Scarlet), or cynomolgus monkey have been harnessed. Currently, multiple IgG Fc variants that have been validated for their prolonged therapeutic potency in preclinical models have been successfully entered into human clinical trials for cancer, infectious diseases, and autoimmune diseases.


Assuntos
Antígenos de Histocompatibilidade Classe I , Receptores Fc , Animais , Células Endoteliais , Imunoglobulina G , Macaca fascicularis , Camundongos
18.
Int J Mol Sci ; 21(21)2020 Nov 03.
Artigo em Inglês | MEDLINE | ID: mdl-33153215

RESUMO

G-protein-coupled receptors (GPCR) transmit extracellular signals into cells to regulate a variety of cellular functions and are closely related to the homeostasis of the human body and the progression of various types of diseases. Great attention has been paid to GPCRs as excellent drug targets, and there are many commercially available small-molecule chemical drugs against GPCRs. Despite this, the development of therapeutic anti-GPCR antibodies has been delayed and is challenging due to the difficulty in preparing active forms of GPCR antigens, resulting from their low cellular expression and complex structures. Here, we focus on anti-GPCR antibodies that have been approved or are subject to clinical trials and present various technologies to prepare active GPCR antigens that enable the isolation of therapeutic antibodies to proceed toward clinical validation.


Assuntos
Anticorpos Monoclonais/isolamento & purificação , Antígenos , Desenho de Fármacos , Receptores Acoplados a Proteínas G/imunologia , Animais , Anticorpos Monoclonais/química , Anticorpos Monoclonais/metabolismo , Anticorpos Monoclonais/uso terapêutico , Especificidade de Anticorpos , Antígenos/química , Antígenos/imunologia , Mapeamento de Epitopos/métodos , Humanos , Terapia de Alvo Molecular/métodos , Terapia de Alvo Molecular/tendências , Receptores Acoplados a Proteínas G/antagonistas & inibidores
19.
J Agric Food Chem ; 68(21): 5873-5879, 2020 May 27.
Artigo em Inglês | MEDLINE | ID: mdl-32367716

RESUMO

Oxygen-independent, flavin-binding fluorescent proteins (FbFPs) are emerging as alternatives to green fluorescent protein (GFP), which has limited applicability in studying anaerobic microorganisms, such as human gastrointestinal bacteria, which grow in oxygen-deficient environments. However, the utility of these FbFPs has been compromised because of their poor fluorescence emission. To overcome this limitation, we have employed a high-throughput library screening strategy and engineered an FbFP derived from Pseudomonas putida (SB2) for enhanced quantum yield. Of the resulting SB2 variants, KOFP-7 exhibited a significantly improved quantum yield (0.61) compared to other reported engineered FbFPs, which was even higher than that of enhanced GFP (EGFP, 0.60), with significantly enhanced tolerance against a strong reducing agent.


Assuntos
Proteínas de Bactérias/química , Dinitrocresóis/metabolismo , Proteínas Luminescentes/química , Pseudomonas putida/metabolismo , Proteínas de Bactérias/genética , Proteínas de Bactérias/metabolismo , Fluorescência , Proteínas Luminescentes/genética , Proteínas Luminescentes/metabolismo , Pseudomonas putida/química , Pseudomonas putida/genética
20.
Biotechnol Bioeng ; 117(8): 2351-2361, 2020 08.
Artigo em Inglês | MEDLINE | ID: mdl-32369186

RESUMO

The immunoglobulin G (IgG) molecule has a long circulating serum half-life (~3 weeks) through pH- dependent FcRn binding-mediated recycling. To hijack the intracellular trafficking and recycling mechanism of IgG as a way to extend serum persistence of non-antibody therapeutic proteins, we have evolved the ectodomain of a low-affinity human FcγRIIa for enhanced binding to the lower hinge and upper CH2 region of IgG, which is very far from the FcRn binding site (CH2-CH3 interface). High-throughput library screening enabled isolation of an FcγRIIa variant (2A45.1) with 32-fold increased binding affinity to human IgG1 Fc (equilibrium dissociation constant: 9.04 × 10-7 M for wild type FcγRIIa and 2.82 × 10-8 M for 2A45.1) and significantly improved affinity to mouse serum IgG compared to wild type human FcγRIIa. The in vivo pharmacokinetic profile of PD-L1 fused with engineered FcγRIIa (PD-L1-2A45.1) was compared with that of PD-L1 fused with wild type FcγRIIa (PD-L1-wild type FcγRIIa) and human PD-L1 in mice. PD-L1-2A45.1 showed 11.7- and 9.7-fold prolonged circulating half-life (t1/2 ) compared to PD-L1 when administered intravenously and intraperitoneally, respectively. In addition, the AUCinf of PD-L1-2A45.1 was two-fold higher compared to that of PD-L1-wild type FcγRIIa. These results demonstrate that engineered FcγRIIa fusion offers a novel and successful strategy for prolonging serum half-life of therapeutic proteins.


Assuntos
Engenharia de Proteínas/métodos , Receptores de IgG , Proteínas Recombinantes de Fusão , Animais , Evolução Molecular Direcionada , Biblioteca Gênica , Meia-Vida , Humanos , Imunoglobulina G , Camundongos , Mutação/genética , Ligação Proteica , Receptores de IgG/química , Receptores de IgG/genética , Receptores de IgG/metabolismo , Proteínas Recombinantes de Fusão/química , Proteínas Recombinantes de Fusão/genética , Proteínas Recombinantes de Fusão/metabolismo
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA