Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 4 de 4
Filtrar
Mais filtros








Base de dados
Intervalo de ano de publicação
1.
Mol Nutr Food Res ; 68(15): e2300883, 2024 Aug.
Artigo em Inglês | MEDLINE | ID: mdl-38984736

RESUMO

SCOPE: Polar lipids, such as gangliosides and phospholipids, are fundamental structural components that play critical roles in the development and maturation of neurons in the brain. Recent evidence has demonstrated that dietary intakes of polar lipids in early life are associated with improved cognitive outcomes during infancy and adolescence. However, the specific mechanisms through which these lipids impact cognition remain unclear. METHODS AND RESULTS: This study examines the direct physiological impact of polar lipid supplementation, in the form of buttermilk powder, on primary cortical neuron growth and maturation. The changes are measured with postsynaptic current response recordings, immunohistochemical examination of functional synapse localization and numbers, and the biochemical quantification of receptors responsible for neuronal synaptic neurotransmission. Chronic exposure to polar lipids increases primary mouse cortical neuron basal excitatory synapse response strength attributed to enhanced dendritic complexity and an altered expression of the excitatory α-amino-3-hydroxy-5-methyl-4-isoxazolepropionic acid (AMPA) receptor subunit 2 (GluR2). CONCLUSION: The present finding suggests that dietary polar lipids improve human cognition through an enhancement of neuronal maturation and/or function.


Assuntos
Suplementos Nutricionais , Neurônios , Transmissão Sináptica , Animais , Neurônios/efeitos dos fármacos , Neurônios/fisiologia , Transmissão Sináptica/efeitos dos fármacos , Camundongos , Córtex Cerebral/efeitos dos fármacos , Córtex Cerebral/metabolismo , Células Cultivadas , Leitelho , Receptores de AMPA/metabolismo , Camundongos Endogâmicos C57BL
2.
Front Immunol ; 15: 1380063, 2024.
Artigo em Inglês | MEDLINE | ID: mdl-38863704

RESUMO

Historically, the central nervous system (CNS) was regarded as 'immune-privileged', possessing its own distinct immune cell population. This immune privilege was thought to be established by a tight blood-brain barrier (BBB) and blood-cerebrospinal-fluid barrier (BCSFB), which prevented the crossing of peripheral immune cells and their secreted factors into the CNS parenchyma. However, recent studies have revealed the presence of peripheral immune cells in proximity to various brain-border niches such as the choroid plexus, cranial bone marrow (CBM), meninges, and perivascular spaces. Furthermore, emerging evidence suggests that peripheral immune cells may be able to infiltrate the brain through these sites and play significant roles in driving neuronal cell death and pathology progression in neurodegenerative disease. Thus, in this review, we explore how the brain-border immune niches may contribute to the pathogenesis of neurodegenerative disorders such as Alzheimer's disease (AD), Parkinson's disease (PD), and multiple sclerosis (MS). We then discuss several emerging options for harnessing the neuroimmune potential of these niches to improve the prognosis and treatment of these debilitative disorders using novel insights from recent studies.


Assuntos
Barreira Hematoencefálica , Encéfalo , Doenças Neurodegenerativas , Humanos , Doenças Neurodegenerativas/imunologia , Doenças Neurodegenerativas/patologia , Animais , Barreira Hematoencefálica/imunologia , Encéfalo/imunologia , Encéfalo/patologia , Privilégio Imunológico
3.
Antioxidants (Basel) ; 13(5)2024 May 13.
Artigo em Inglês | MEDLINE | ID: mdl-38790703

RESUMO

The etiology of hearing impairment is multifactorial, with contributions from both genetic and environmental factors. Although genetic studies have yielded valuable insights into the development and function of the auditory system, the contribution of gene products and their interaction with alternate environmental factors for the maintenance and development of auditory function requires further elaboration. In this review, we provide an overview of the current knowledge on the role of redox dysregulation as the converging factor between genetic and environmental factor-dependent development of hearing loss, with a focus on understanding the interaction of oxidative stress with the physical components of the peripheral auditory system in auditory disfunction. The potential involvement of molecular factors linked to auditory function in driving redox imbalance is an important promoter of the development of hearing loss over time.

4.
ACS Nano ; 18(17): 11284-11299, 2024 Apr 30.
Artigo em Inglês | MEDLINE | ID: mdl-38639114

RESUMO

The development of mRNA delivery systems utilizing lipid-based assemblies holds immense potential for precise control of gene expression and targeted therapeutic interventions. Despite advancements in lipid-based gene delivery systems, a critical knowledge gap remains in understanding how the biophysical characteristics of lipid assemblies and mRNA complexes influence these systems. Herein, we investigate the biophysical properties of cationic liposomes and their role in shaping mRNA lipoplexes by comparing various fabrication methods. Notably, an innovative fabrication technique called the liposome under cryo-assembly (LUCA) cycle, involving a precisely controlled freeze-thaw-vortex process, produces distinctive onion-like concentric multilamellar structures in cationic DOTAP/DOPE liposomes, in contrast to a conventional extrusion method that yields unilamellar liposomes. The inclusion of short-chain DHPC lipids further modulates the structure of cationic liposomes, transforming them from multilamellar to unilamellar structures during the LUCA cycle. Furthermore, the biophysical and biological evaluations of mRNA lipoplexes unveil that the optimal N/P charge ratio in the lipoplex can vary depending on the structure of initial cationic liposomes. Cryo-EM structural analysis demonstrates that multilamellar cationic liposomes induce two distinct interlamellar spacings in cationic lipoplexes, emphasizing the significant impact of the liposome structures on the final structure of mRNA lipoplexes. Taken together, our results provide an intriguing insight into the relationship between lipid assembly structures and the biophysical characteristics of the resulting lipoplexes. These relationships may open the door for advancing lipid-based mRNA delivery systems through more streamlined manufacturing processes.


Assuntos
Ácidos Graxos Monoinsaturados , Lipídeos , Lipossomos , Compostos de Amônio Quaternário , RNA Mensageiro , Lipossomos/química , RNA Mensageiro/química , RNA Mensageiro/genética , Lipídeos/química , Humanos , Técnicas de Transferência de Genes , Fosfatidiletanolaminas/química
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA