Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 4 de 4
Filtrar
Mais filtros








Base de dados
Intervalo de ano de publicação
1.
Biosensors (Basel) ; 14(3)2024 Feb 29.
Artigo em Inglês | MEDLINE | ID: mdl-38534236

RESUMO

Vancomycin (VAN) is an effective antibiotic against Gram-positive bacteria and the first-line therapy to prevent and treat methicillin-resistant Staphylococcus aureus (MRSA) and severe infections. However, low concentrations of VAN can result in resistant strains. High doses of VAN can cause nephrotoxicity and ototoxicity; thus, VAN is a representative drug for which drug monitoring is recommended. Several methods have been proposed to detect VAN. Among them, lateral flow immunoassays (LFIAs) have advantages, such as simple and user-friendly operation, low sample volume requirement, and cost effectiveness. In this study, we developed an LFIA capable of rapid on-site detection such that the VAN concentration in plasma could be monitored within 20 min by a one-step detection process using whole blood without plasma separation. VAN can be detected in whole blood over a wide range of concentrations (20-10,000 ng/mL), and the LFIA reported here has a detection limit of 18 ng/mL. The applicability of the developed LFIA compared to the results of measuring VAN with a commercial enzyme-linked immunosorbent assay kit showed a satisfactory correlation (Spearman's rho, ρ = 0.891). Therefore, the developed LFIA enables rapid and wide-range VAN detection in whole blood and can aid in drug monitoring to evaluate patients' responses to treatment.


Assuntos
Staphylococcus aureus Resistente à Meticilina , Vancomicina , Humanos , Vancomicina/farmacologia , Antibacterianos/farmacologia , Imunoensaio/métodos , Ensaio de Imunoadsorção Enzimática
2.
Micromachines (Basel) ; 12(10)2021 Sep 23.
Artigo em Inglês | MEDLINE | ID: mdl-34683198

RESUMO

Cancer is a dynamic disease involving constant changes. With these changes, cancer cells become heterogeneous, resulting in varying sensitivity to chemotherapy. The heterogeneity of cancer cells plays a key role in chemotherapy resistance and cancer recurrence. Therefore, for effective treatment, cancer cells need to be analyzed at the single-cell level by monitoring various proteins and investigating their heterogeneity. We propose a microfluidic chip for a single-cell proteomics assay that is capable of analyzing complex cellular signaling systems to reveal the heterogeneity of cancer cells. The single-cell assay chip comprises (i) microchambers (n = 1376) for manipulating single cancer cells, (ii) micropumps for rapid single-cell lysis, and (iii) barcode immunosensors for detecting nine different secretory and intracellular proteins to reveal the correlation among cancer-related proteins. Using this chip, the single-cell proteomics of a lung cancer cell line, which may be easily masked in bulk analysis, were evaluated. By comparing changes in the level of protein secretion and heterogeneity in response to combinations of four anti-cancer drugs, this study suggests a new method for selecting the best combination of anti-cancer drugs. Subsequent preclinical and clinical trials should enable this platform to become applicable for patient-customized therapies.

3.
Sensors (Basel) ; 20(21)2020 Oct 31.
Artigo em Inglês | MEDLINE | ID: mdl-33142877

RESUMO

Electrical methods are among the primarily studied non-invasive glucose measurement techniques; however, various factors affect the accuracy of the sensors used. Of these, the temperature is a critical factor; hence, the effects of temperature on the electrical properties of blood components are investigated in this study. Furthermore, the changes in the electrical properties of blood according to the glucose level are corrected by considering the effects of temperature on the electrical properties. An impedance sensor is developed and used to measure whole blood impedance in 10 healthy participants at various temperatures and glucose levels. Subsequently, the conductivities of the plasma and cytoplasm were extracted. Changes in the electrical properties of the blood components are then analyzed using linear regression and repeated measures ANOVA. The electrical conductivities of plasma and cytoplasm increased with increasing temperatures (plasma: 0.0397 (slope), 0.7814 (R2), cytoplasm: 0.014 (slope), 0.694 (R2)). At three values of increasing glucose levels (85.4, 158.1, and 271.8 mg/dL), the electrical conductivities of the plasma and cytoplasm decreased. These tendencies are more significant upon temperature corrections (p-values; plasma: 0.001, 0.001, cytoplasm: 0.003, 0.002). The relationships between temperature and electrical conductivity changes can thus be used for temperature corrections in blood glucose measurement.


Assuntos
Automonitorização da Glicemia , Glicemia/análise , Espectroscopia Dielétrica , Impedância Elétrica , Humanos , Temperatura
4.
Biomicrofluidics ; 11(5): 054108, 2017 Sep.
Artigo em Inglês | MEDLINE | ID: mdl-29034052

RESUMO

In this study, a microfluidic cell concentrator with a reduced-deviation-flow herringbone structure is proposed. The reduced-deviation-flow herringbone structure reduces the magnitude of deviation flow by a factor of 3.3 compared to the original herringbone structure. This structure shows higher recovery efficiency compared to the original herringbone structure for various particle sizes at high flow rate conditions. Using the reduced-deviation-flow herringbone structure, the experimental results show a recovery efficiency of 98.5% and a concentration factor of 3.4× at a flow rate of 100 ml/h for all particle sizes. An iterative concentration process is performed to achieve a higher concentration factor for 10.2-µm particles and Jurkat cells. With two stages of the concentration process, we were able to achieve over 98% recovery efficiency and a concentration factor of 10-11×. Cell viability was found to be above 96% after iterative concentration. We believe that this device could be used to concentrate cells as a preparatory step for studying low-abundance cells.

SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA