Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 1 de 1
Filtrar
Mais filtros








Base de dados
Intervalo de ano de publicação
1.
Bioorg Med Chem ; 98: 117578, 2024 Jan 15.
Artigo em Inglês | MEDLINE | ID: mdl-38154348

RESUMO

As the ß-phenyl-α,ß-unsaturated carbonyl (PUSC) structure was previously identified to play a key role in tyrosinase inhibition, 14 analogs with a PUSC structure built on a thiazol-4(5H)-one scaffold were synthesized using Knoevenagel condensation to serve as potential tyrosinase inhibitors. Through mushroom tyrosinase inhibition experiments, two analogs 9 and 11 were identified as potent tyrosinase inhibitors, with 11 exhibiting an IC50 value of 0.4 ± 0.01 µM, which indicates its 26-fold greater potency than kojic acid. Kinetic studies using Lineweaver-Burk plots revealed that 9 and 11 are competitive and mixed-type inhibitors, respectively; these kinetic results were supported by docking simulations. According to the B16F10 cell-based experiments, 9 and 11 inhibited melanogenesis more effectively than kojic acid due to their potent cellular tyrosinase inhibitory activity. In addition, analogs 9 and 11 exhibited moderate-to-strong antioxidant capacity, scavenging ABTS+, DPPH, and ROS radicals. In particular, analog 12 with a catechol moiety exhibited very strong ROS-scavenging activity, similar to Trolox. These results suggest that analogs 9 and 11, which exhibit potent tyrosinase inhibitory activity in mushroom and mammalian cells and anti-melanogenic effects in B16F10 cells, are promising antibrowning agents for crops and skin lightening agents for hyperpigmentation-related diseases.


Assuntos
Agaricales , Monofenol Mono-Oxigenase , Animais , Antioxidantes/farmacologia , Relação Estrutura-Atividade , Inibidores Enzimáticos/farmacologia , Inibidores Enzimáticos/química , Cinética , Espécies Reativas de Oxigênio , Simulação de Acoplamento Molecular , Melaninas , Mamíferos/metabolismo
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA