Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 2 de 2
Filtrar
Mais filtros








Base de dados
Intervalo de ano de publicação
1.
J Am Chem Soc ; 143(46): 19425-19437, 2021 11 24.
Artigo em Inglês | MEDLINE | ID: mdl-34767710

RESUMO

Muraymycins are peptidyl nucleoside antibiotics that contain two Cß-modified amino acids, (2S,3S)-capreomycidine and (2S,3S)-ß-OH-Leu. The former is also a component of chymostatins, which are aldehyde-containing peptidic protease inhibitors that─like muraymycin─are derived from nonribosomal peptide synthetases (NRPSs). Using feeding experiments and in vitro characterization of 12 recombinant proteins, the biosynthetic mechanism for both nonproteinogenic amino acids is now defined. The formation of (2S,3S)-capreomycidine is shown to involve an FAD-dependent dehydrogenase:cyclase that requires an NRPS-bound pathway intermediate as a substrate. This cryptic dehydrogenation strategy is both temporally and mechanistically distinct in comparison to the biosynthesis of other capreomycidine diastereomers, which has previously been shown to proceed by Cß-hydroxylation of free l-Arg catalyzed by a member of the nonheme Fe2+- and α-ketoglutarate (αKG)-dependent dioxygenase family and (eventually) a dehydration-mediated cyclization process catalyzed by a distinct enzyme(s). Contrary to our initial expectation, the sole nonheme Fe2+- and αKG-dependent dioxygenase candidate Mur15 encoded within the muraymycin gene cluster is instead demonstrated to catalyze specific Cß hydroxylation of the Leu residue to generate (2S,3S)-ß-OH-Leu that is found in most muraymycin congeners. Importantly, and in contrast to known l-Arg-Cß-hydroxylases, the Mur15-catalyzed reaction occurs after the NRPS-mediated assembly of the peptide scaffold. This late-stage functionalization affords the opportunity to exploit Mur15 as a biocatalyst, proof of concept of which is provided.


Assuntos
Arginina/metabolismo , Produtos Biológicos/metabolismo , Leucina/metabolismo , Peptídeo Sintases/metabolismo , Peptídeos/metabolismo , Arginina/química , Produtos Biológicos/química , Leucina/química , Estrutura Molecular , Peptídeo Sintases/química , Peptídeos/química
2.
Eur J Med Chem ; 219: 113435, 2021 Jul 05.
Artigo em Inglês | MEDLINE | ID: mdl-33892272

RESUMO

The eukaryotic translation initiation factor 4E (eIF4E) is the master regulator of cap-dependent protein synthesis. Overexpression of eIF4E is implicated in diseases such as cancer, where dysregulation of oncogenic protein translation is frequently observed. eIF4E has been an attractive target for cancer treatment. Here we report a high-resolution X-ray crystal structure of eIF4E in complex with a novel inhibitor (i4EG-BiP) that targets an internal binding site, in contrast to the previously described inhibitor, 4EGI-1, which binds to the surface. We demonstrate that i4EG-BiP is able to displace the scaffold protein eIF4G and inhibit the proliferation of cancer cells. We provide insights into how i4EG-BiP is able to inhibit cap-dependent translation by increasing the eIF4E-4E-BP1 interaction while diminishing the interaction of eIF4E with eIF4G. Leveraging structural details, we designed proteolysis targeted chimeras (PROTACs) derived from 4EGI-1 and i4EG-BiP and characterized these on biochemical and cellular levels. We were able to design PROTACs capable of binding eIF4E and successfully engaging Cereblon, which targets proteins for proteolysis. However, these initial PROTACs did not successfully stimulate degradation of eIF4E, possibly due to competitive effects from 4E-BP1 binding. Our results highlight challenges of targeted proteasomal degradation of eIF4E that must be addressed by future efforts.


Assuntos
Compostos de Bifenilo/metabolismo , Fator de Iniciação 4E em Eucariotos/metabolismo , Sítios de Ligação , Compostos de Bifenilo/química , Compostos de Bifenilo/farmacologia , Linhagem Celular Tumoral , Sobrevivência Celular/efeitos dos fármacos , Desenho de Fármacos , Fator de Iniciação 4E em Eucariotos/antagonistas & inibidores , Fator de Iniciação 4E em Eucariotos/genética , Humanos , Cinética , Simulação de Acoplamento Molecular , Pró-Fármacos/síntese química , Pró-Fármacos/química , Pró-Fármacos/metabolismo , Pró-Fármacos/farmacologia , Mapas de Interação de Proteínas/efeitos dos fármacos , Proteólise/efeitos dos fármacos , Proteômica , Proteínas Recombinantes/biossíntese , Proteínas Recombinantes/química , Proteínas Recombinantes/isolamento & purificação
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA