Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 9 de 9
Filtrar
Mais filtros








Base de dados
Intervalo de ano de publicação
1.
Sci Rep ; 11(1): 15787, 2021 08 04.
Artigo em Inglês | MEDLINE | ID: mdl-34349192

RESUMO

Recently, we reported a novel mode of action in monarch butterfly (Danaus plexippus) larvae exposed to neonicotinoid insecticides: arrest in pupal ecdysis following successful larval ecdysis. In this paper, we explore arrested pupal ecdysis in greater detail and propose adverse outcome pathways to explain how neonicotinoids cause this effect. Using imidacloprid as a model compound, we determined that final-instar monarchs, corn earworms (Helicoverpa zea), and wax moths (Galleria mellonella) showed high susceptibility to arrested pupal ecdysis while painted ladies (Vanessa cardui) and red admirals (Vanessa atalanta) showed low susceptibility. Fall armyworms (Spodoptera frugiperda) and European corn borers (Ostrinia nubilalis) were recalcitrant. All larvae with arrested ecdysis developed pupal cuticle, but with incomplete shedding of larval cuticle and unexpanded pupal appendages; corn earworm larvae successfully developed into adults with unexpanded appendages. Delayed initiation of pupal ecdysis was also observed with treated larvae. Imidacloprid exposure was required at least 26 h prior to pupal ecdysis to disrupt the molt. These observations suggest neonicotinoids may disrupt the function of crustacean cardioactive peptide (CCAP) neurons, either by directly acting on their nicotinic acetylcholine receptors or by acting on receptors of inhibitory neurons that regulate CCAP activity.


Assuntos
Inseticidas/efeitos adversos , Muda/efeitos dos fármacos , Neonicotinoides/efeitos adversos , Nitrocompostos/efeitos adversos , Pupa/efeitos dos fármacos , Pupa/fisiologia , Animais , Larva/efeitos dos fármacos , Larva/fisiologia , Neurônios/metabolismo , Neurônios/fisiologia , Neuropeptídeos/metabolismo , Receptores Nicotínicos/metabolismo
2.
J Exp Biol ; 218(Pt 17): 2720-7, 2015 Sep.
Artigo em Inglês | MEDLINE | ID: mdl-26113140

RESUMO

Direct benefits are considered to be the driving force of high female mating rates, yet species in which females do not receive material resources from males still experience increased fitness from mating frequently. One hypothesis suggests that substances within the ejaculate may boost survival or offspring production. If these materials are limiting to females, they will require continual renewal via mating and could provide a functional understanding of how high mating rates lead to increased female fitness. Using the Texas field cricket, Gryllus texensis, we investigated the sexual transfer of prostaglandin E2, an important mediator of invertebrate reproduction. We determined that like other gryllid species, males include significant quantities of prostaglandin E2 (PGE2) and its precursor molecule, arachidonic acid (AA), within the spermatophore. These components are passed to females during copulation and then stored within the spermatheca. We then tested the novel hypothesis that PGE2 is ephemerally available after mating and that females must frequently mate to maintain access to this limiting compound. We found that PGE2 within the spermatheca is indeed depleted through time, with only a small amount remaining 1 week after mating, but that its presence can be maintained at high quantities and for prolonged periods of time by remating. Our results support the hypothesis that high female mating rates increase the amount and availability of PGE2 throughout the breeding season, which could explain the positive relationship between female mating rate and fecundity.


Assuntos
Gryllidae/fisiologia , Prostaglandinas/análise , Espermatogônias/química , Animais , Ácido Araquidônico/análise , Copulação , Feminino , Fertilidade/fisiologia , Masculino , Reprodução/fisiologia
3.
FEBS Lett ; 584(6): 1212-6, 2010 Mar 19.
Artigo em Inglês | MEDLINE | ID: mdl-20159019

RESUMO

Pheromone biosynthesis-activating neuropeptide (PBAN) and pyrokinins belong to a family of insect peptide hormones that have a common FXPRLamide C-terminal ending. The G-protein-coupled receptors (GPCRs) for this peptide family were first identified from a moth and Drosophila with sequence similarity to neuromedin U receptors from vertebrates. We have characterized the PBAN-receptor (PBAN-R or PR) active binding domains using chimeric GPCRs and proposed that extracellular loop 3 is critical for ligand selection. Here, we characterized the 3rd extracellular domain of PBAN-R through site-directed point mutations. Results are discussed in context of the structural features required for receptor activation using receptor activation experiments and in silico computational modeling. This research will help in characterizing these receptors towards a goal of finding agonists and/or antagonists for PBAN/pyrokinin receptors.


Assuntos
Insetos/genética , Neuropeptídeos/metabolismo , Receptores de Neuropeptídeos/genética , Receptores de Neuropeptídeos/metabolismo , Sequência de Aminoácidos , Animais , Sequência de Bases , Domínio Catalítico/genética , Feminino , Genes de Insetos/fisiologia , Insetos/metabolismo , Modelos Biológicos , Modelos Moleculares , Dados de Sequência Molecular , Mutagênese Sítio-Dirigida , Neuropeptídeos/agonistas , Fosforilação/genética , Proteínas Quinases/metabolismo , Receptores Acoplados a Proteínas G/genética , Receptores Acoplados a Proteínas G/metabolismo , Receptores de Neuropeptídeos/agonistas , Homologia de Sequência
4.
J Insect Physiol ; 53(8): 803-18, 2007 Aug.
Artigo em Inglês | MEDLINE | ID: mdl-17512003

RESUMO

Moth sex-pheromone biosynthesis follows a circadian cycle, which is cued by the release of the neurohormone pheromone biosynthesis activating neuropeptide (PBAN) to the hemolymph. PBAN binds to a G protein-coupled receptor (GPCR), in pheromone glands, (PG) initially identified by us in Helicoverpa zea moths (HezPBAN-R). In this study, the sequences of the seven transmembrane helices of HezPBAN-R were identified, built, packed and oriented correctly after multiple sequence alignment of the HezPBAN-R and several other GPCRs using the X-ray structure of rhodopsin as a template. Molecular dynamics simulations were run on three different beta-turn types of the C-terminal hexapeptide of PBAN and the results clustered into 12 structurally distinct groups. The lowest energy conformation from each group was used for computer-simulated docking with the model of the HezPBAN-R. Highest scoring complexes were examined and putative binding sites were identified. Experimental studies, using in vitro PG, revealed lower levels of pheromonotropic activity when challenged with pyrokinin-like peptides than with HezPBAN as ligand. Thus, the Drosophila melanogaster pyrokinin-1 receptor (CG9918) was chosen to create chimera receptors by exchanging between the three extracellular loops of the HezPBAN-R and the CG9918 for in silico mutagenesis experiments. The predicted docking model was validated with experimental data obtained from expressed chimera receptors in Sf9 cells.


Assuntos
Mariposas/metabolismo , Neuropeptídeos/metabolismo , Sequência de Aminoácidos , Animais , Sítios de Ligação , Modelos Moleculares , Dados de Sequência Molecular , Neuropeptídeos/química , Estrutura Terciária de Proteína
5.
Arch Insect Biochem Physiol ; 59(2): 53-8, 2005 Jun.
Artigo em Inglês | MEDLINE | ID: mdl-15898118

RESUMO

Sex pheromones of many moth species have relatively simple structures consisting of a hydrocarbon chain with a functional group and one to several double bonds. These sex pheromones are derived from fatty acids through specific biosynthetic pathways. We investigated the incorporation of deuterium-labeled tetradecanoic, hexadecanoic, and octadecanoic acid precursors into pheromone components of Heliothis subflexa and Heliothis virescens. The two species utilize (Z)11-hexadecenal as the major pheromone component, which is produced by Delta11 desaturation of hexadecanoic acid. H. subflexa also produced (Z)11-hexadecanol and (Z)-11-hexadecenyl acetate via Delta11 desaturation. In H. subflexa, octadecanoic acid was used to biosynthesize the minor pheromone components (Z)9-hexadecenal, (Z)9-hexadecenol, and (Z)9-hexadecenyl acetate. These minor components are produced by Delta11 desaturation of octadecanoic acid followed by one round of chain-shortening. In contrast, H. virescens used hexadecanoic acid as a substrate to form (Z)11-hexadecenal and (Z)11-hexadecenol and hexadecenal. H. virescens also produced (Z)9-tetradecenal by Delta11 desaturation of the hexadecanoic acid followed by one round of chain-shortening and reduction. Tetradecanoic acid was not utilized as a precursor to form Z9-14:Ald in H. virescens. This labeling pattern indicates that the Delta11 desaturase is the only active desaturase present in the pheromone gland cells of both species.


Assuntos
Modelos Biológicos , Mariposas/metabolismo , Atrativos Sexuais/biossíntese , Animais , Deutério , Ácidos Graxos Dessaturases/metabolismo , Cromatografia Gasosa-Espectrometria de Massas , Ácidos Palmíticos/metabolismo , Quinazolinas/metabolismo
6.
J Chem Ecol ; 31(1): 15-28, 2005 Jan.
Artigo em Inglês | MEDLINE | ID: mdl-15839476

RESUMO

Mated female Heliothis virescens and H. subflexa were induced to produce sex pheromone during the photophase by injection of pheromone biosynthesis activating neuropeptide (PBAN). When injected with 1 pmol Hez-PBAN, the total amount of pheromone that could be extracted from glands of mated females during the photophase was similar to that extracted from virgin females in the scotophase. The PBAN-induced profile of pheromone components was compared between mated, PBAN-injected females and virgin females during spring and fall. Virgin females exhibited some differences in the relative composition of the pheromone blend between spring and fall, but no such temporal differences were detected in PBAN-injected, mated females. Because the temporal variation in pheromone blend composition was greater for virgin females than for PBAN-injected females, PBAN can be used to determine a female's native pheromone phenotype. This procedure has the advantages that pheromone glands can be extracted during the photophase, from mated females that have already oviposited.


Assuntos
Mariposas/fisiologia , Neuropeptídeos/administração & dosagem , Feromônios/biossíntese , Atrativos Sexuais/biossíntese , Animais , Glândulas Exócrinas/metabolismo , Feminino , Oviposição , Estações do Ano
7.
J Insect Physiol ; 50(6): 555-60, 2004 Jun.
Artigo em Inglês | MEDLINE | ID: mdl-15183285

RESUMO

Isolated pheromone glands of Helicoverpa zea were utilized to investigate the physiological action of pheromone biosynthesis activating neuropeptide (PBAN) with regard to the role of calcium ions in stimulating pheromone biosynthesis under various incubation conditions. Incubation of glands with 1 microM or 1 nM PBAN produced a significant amount of pheromone after a 5 min incubation period and reached maximum pheromone production after 30 min. Glands incubated with PBAN for 1 min, and then without PBAN for 30 min, produced pheromone whether or not extracellular calcium was present during the first 1 min. The presence of lanthanum as a calcium channel blocker did not affect pheromone production if present during the first 1 min of incubation with PBAN. However, if calcium was absent or lanthanum ion was present during the 30 min of incubation, no pheromone was produced. A maximum amount of pheromone was reached when glands were incubated for 1 min with PBAN and for 10 min without PBAN, and repeated three times. The present results indicate that a time interval exists between PBAN binding to a receptor and opening of extracellular calcium channels. Calcium influx into the cytosol from extracellular stores is required for PBAN to stimulate pheromone production. This could be achieved by PBAN either binding periodically to the receptor or the plasma membrane calcium channel could remain activated for a period of time after the initial activation.


Assuntos
Cálcio/fisiologia , Glândulas Exócrinas/metabolismo , Mariposas/fisiologia , Neuropeptídeos/fisiologia , Atrativos Sexuais/biossíntese , Animais , Canais de Cálcio/metabolismo , Técnicas de Cultura de Órgãos , Receptores de Superfície Celular/metabolismo , Sistemas do Segundo Mensageiro/fisiologia , Transdução de Sinais/fisiologia
8.
Proc Natl Acad Sci U S A ; 100(3): 809-14, 2003 Feb 04.
Artigo em Inglês | MEDLINE | ID: mdl-12533665

RESUMO

The pheromone biosynthetic pathway for production of the sex pheromone disparlure, 2-methyl-7R,8S-epoxy-octadecane, was determined for the gypsy moth. Each step in the pathway was followed by using deuterium-labeled compounds that could be identified by using GCMS. This approach provides unequivocal determination of specific reactions in the pathway. It was shown that the alkene precursor, 2-methyl-Z7-octadecene, is most likely made in oenocyte cells associated with abdominal epidermal cells. The pathway begins with valine contributing carbons for chain initiation, including the methyl-branched carbon, followed by chain elongation to 19 carbons. The double bond is introduced with an unusual Delta12 desaturase that utilizes a methyl-branched substrate. The resulting 18-methyl-Z12-nonadecenoate is decarboxylated to the hydrocarbon, 2-methyl-Z7-octadecene. The alkene is then transported to the pheromone gland through the hemolymph, most probably by lipophorin. At the pheromone gland, the alkene is unloaded and transformed into the epoxide disparlure for release into the environment. A chiral HPLC column was used to demonstrate that the (R,S)-stereoisomer of the epoxide, (+)-disparlure is found in pheromone glands.


Assuntos
Alcanos/química , Atrativos Sexuais/biossíntese , Alcanos/metabolismo , Animais , Cromatografia Líquida de Alta Pressão , Compostos de Epóxi/química , Cromatografia Gasosa-Espectrometria de Massas , Mariposas , Estereoisomerismo , Fatores de Tempo , Valina/química
9.
Insect Biochem Mol Biol ; 32(11): 1353-9, 2002 Nov.
Artigo em Inglês | MEDLINE | ID: mdl-12530203

RESUMO

Sex pheromones of many Lepidopteran species have relatively simple structures consisting of a hydrocarbon chain with a functional group and usually one to several double bonds. The sex pheromones are usually derived from fatty acids through a specific biosynthetic pathway. We investigated the incorporation of deuterium-labeled palmitic and stearic acid precursors into pheromone components of Helicoverpa zea and Helicoverpa assulta. The major pheromone component for H. zea is (Z)11-hexadecenal (Z11-16:Ald) while H. assulta utilizes (Z)9-hexadecenal (Z9-16:Ald). We found that H. zea uses palmitic acid to form Z11-16:Ald via delta 11 desaturation and reduction, but also requires stearic acid to biosynthesize the minor pheromone components Z9-16:Ald and Z7-16:Ald. The Z9-16:Ald is produced by delta 11 desaturation of stearic acid followed by one round of chain-shortening and reduction to the aldehyde. The Z7-16:Ald is produced by delta 9 desaturation of stearic acid followed by one round of chain-shortening and reduction to the aldehyde. H. assulta uses palmitic acid as a substrate to form Z9-16:Ald, Z11-16:Ald and 16:Ald. The amount of labeling indicated that the delta 9 desaturase is the major desaturase present in the pheromone gland cells of H. assulta; whereas, the delta 11 desaturase is the major desaturase in pheromone glands of H. zea. It also appears that H. assulta lacks chain-shortening enzymes since stearic acid did not label any of the 16-carbon aldehydes.


Assuntos
Mariposas/metabolismo , Feromônios/biossíntese , Animais , Deutério , Ácidos Graxos/metabolismo , Ácidos Graxos não Esterificados/metabolismo , Feminino , Técnica de Diluição de Radioisótopos , Especificidade da Espécie
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA