Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 1 de 1
Filtrar
Mais filtros








Base de dados
Intervalo de ano de publicação
1.
Pathol Res Pract ; 253: 155033, 2024 Jan.
Artigo em Inglês | MEDLINE | ID: mdl-38134837

RESUMO

There is a plethora of information embedded in a tissue section that the conventional IHC understands only partially. Predictive biomarkers for precision immuno-oncology heavily dependent on the spatial arrangement of cells and the co-expression patterns in the tissue sections. Here we have explored the versatility of indirect multiplex immunofluorescence (mIF) and indirect multiplex immunohistochemistry (mIHC) for the labeling of breast cancer prognostic markers in routinely processed, formalin-fixed paraffin-embedded (FFPE) tissues at high resolution. The multiplex immunohistochemistry protocol utilized sequential staining for the chromogenic immunolabelling of Estrogen Receptor α (ERα) or Progesterone Receptor (PR), Human Epidermal Growth Factor Receptor 2 (HER2), and Nucleoside diphosphate kinase 1 (NM23) by multicolor chromogens in different combinations. A feasible workflow for multiplex immunofluorescence was also effectively standardized for ERα, PR, and HER2 using combinations of commercially available Alexa Fluor and Quantum dots semiconductor nanocrystal conjugated secondary antibodies. Multiplex chromogenic immunolabeling revealed differential expression of the markers on the same slide. Kappa statistics revealed perfect agreement with uniplex immunohistochemistry. For multiplex fluorescence approach, surface receptor detection using Quantum dots and Alexa fluor dyes for cytoplasmic or nuclear markers performed well for profiling multiple co-localized biomarkers on a single paraffin tissue section. The technique developed reveals additional information such as co-expression, spatial relationships, and tumor heterogeneity, providing a deeper insight into developing combinatorial therapeutic strategies in clinical care. This high throughput workflow complements the outcomes of traditional IHC while saving tissue, time, labour, and reagents.


Assuntos
Neoplasias da Mama , Pontos Quânticos , Humanos , Feminino , Biomarcadores Tumorais/metabolismo , Neoplasias da Mama/diagnóstico , Neoplasias da Mama/patologia , Receptor alfa de Estrogênio , Corantes , Antígenos
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA