RESUMO
AIMS: We determined whether implantation of heart tissue-derived decellularized matrix, which contains native biochemical and structural matrix composition, could thicken the infarcted left ventricular (LV) wall and improve LV function in a rat myocardial infarction model. METHODS AND RESULTS: Myocardial infarction was induced by left coronary ligation in Fischer rats. One week later, saline (75 µL, n = 17) or matrix (75 µL, n = 19) was directly injected into the infarcted area. At 6 weeks after injection, cardiac function was assessed by left ventriculogram, echocardiography, and Millar catheter. The hearts were pressure fixed to measure postmortem LV volume and processed for histology. Left ventriculogram demonstrated that LV ejection fraction (EF) was significantly greater in the matrix-treated (56.7% ± 1.4%) than in the saline-treated group (52.4% ± 1.5%; P = .043), and paradoxical LV systolic bulging was significantly reduced in the matrix-treated group (6.2% ± 1.6% of the LV circumference) compared to the saline-treated group (10.3% ± 1.3%; P = .048). Matrix implantation significantly increased the thickness of infarcted LV wall (0.602 ± 0.029 mm) compared to the saline-treated group (0.484 ± 0.03 mm; P = .0084). Infarct expansion index was significantly lower in the matrix-treated group (1.053 ± 0.051) than in the saline-treated group (1.382 ± 0.096, P = .0058). Blood vessel density and c-kit positive staining cells within the infarct area were comparable between the 2 groups. CONCLUSIONS: Implantation of heart tissue-derived decellularized matrix thickens the LV infarcted wall, prevents paradoxical LV systolic bulging, and improves LV EF after myocardial infarction in rats. This benefit was not dependent on the enhanced angiogenesis or the recruitment of endogenous stem cells to the injury site.
Assuntos
Cardiotônicos/uso terapêutico , Matriz Extracelular/química , Ventrículos do Coração/efeitos dos fármacos , Infarto do Miocárdio/tratamento farmacológico , Miocárdio/química , Extratos de Tecidos/uso terapêutico , Indutores da Angiogênese/administração & dosagem , Indutores da Angiogênese/química , Indutores da Angiogênese/uso terapêutico , Animais , Biomarcadores/metabolismo , Cardiotônicos/administração & dosagem , Cardiotônicos/química , Vasos Coronários/efeitos dos fármacos , Vasos Coronários/metabolismo , Vasos Coronários/patologia , Feminino , Ventrículos do Coração/metabolismo , Ventrículos do Coração/patologia , Ventrículos do Coração/fisiopatologia , Injeções Intralesionais , Infarto do Miocárdio/fisiopatologia , Neovascularização Fisiológica/efeitos dos fármacos , Tamanho da Partícula , Proteínas Proto-Oncogênicas c-kit/metabolismo , Ratos , Ratos Endogâmicos F344 , Células-Tronco/efeitos dos fármacos , Células-Tronco/metabolismo , Células-Tronco/patologia , Volume Sistólico/efeitos dos fármacos , Extratos de Tecidos/administração & dosagem , Extratos de Tecidos/química , Função Ventricular Esquerda/efeitos dos fármacos , Remodelação Ventricular/efeitos dos fármacosRESUMO
During the past 15 years, our research group has transplanted fetal/neonatal cardiomyocytes, mesenchymal stem cells, and embryonic stem cell-derived cardiomyocytes into infarcted myocardium in a rat myocardial infarction model. Our experimental data demonstrated that cell transplantation therapy provides a potential approach for the treatment of injured myocardium after myocardial infarction based on the reported positive effects upon histological appearance and left ventricular function. However, the underlying mechanisms of the benefits from cell transplantation therapy remain unclear and may involve replacement of scar tissue by transplanted cells, induced neoangiogenesis and paracrine effects of factors released by the transplanted cells. In this review, we summarize our experiences from experimental cell transplantation therapy in a rat myocardial infarction model and discuss the controversies and questions that need to be addressed in future studies.
Assuntos
Transplante de Células , Infarto do Miocárdio/terapia , Animais , Modelos Animais de Doenças , Miocárdio/patologia , Neovascularização Fisiológica , Função Ventricular EsquerdaRESUMO
We determined the effects of olmesartan on infarct size and cardiac function in a rat ischemia/reperfusion model. Rats underwent 30 min of left coronary artery (CA) occlusion followed by 2 h of reperfusion. In protocol 1, the rats received (by i.v.) 1 mL of vehicle at 10 min after CA occlusion (Group 1, n = 15); olmesartan (0.3 mg/kg) at 10 min after CA occlusion (Group 2, n = 15); 1 mL of vehicle at 5 min before CA reperfusion (Group 3, n = 15); or olmesartan (0.3 mg/kg) 5 min before CA reperfusion (Group 4, n = 15). In protocol 2, the rats received (by i.v.) 1 mL of vehicle at 5 min before CA reperfusion (Group 5, n = 21); or olmesartan (3 mg/kg) at 5 min before CA reperfusion (Group 6, n = 21). Systemic hemodynamics, left ventricular (LV) function, LV ischemic risk zone, no-reflow zone, and infarct size were determined. In protocol 1, olmesartan (0.3 mg/kg) did not affect blood pressure (BP), heart rate, LV +/- dp/dt or LV fractional shortening during the experimental procedure, and did not alter no-reflow or infarct size. In protocol 2, olmesartan (3 mg/kg) significantly reduced infarct size to 21.7 +/- 4.1% from 34.3 +/- 4.1% of risk zone in the vehicle group (P= 0.035), but did not alter the no-reflow size. Prior to CA reperfusion, olmesartan (3 mg/kg) significantly reduced mean BP by 22% and LV +/-dp/dt, but did not affect heart rate. At 2 h after reperfusion, olmesartan significantly decreased heart rate by 21%, mean BP by 14%, and significantly increased LV fractional shortening from 54.1 +/- 1.4% to 61.3 +/- 1.6% (P= 0.0018). Olmesartan significantly reduced myocardial infarct size and improved LV contractility at a dose (3 mg/kg) with systemic vasodilating effects but not at a lower dose (0.3 mg/kg) without hemodynamic effects.
Assuntos
Bloqueadores do Receptor Tipo 1 de Angiotensina II/farmacologia , Cardiotônicos/farmacologia , Imidazóis/farmacologia , Infarto do Miocárdio/prevenção & controle , Traumatismo por Reperfusão Miocárdica/prevenção & controle , Tetrazóis/farmacologia , Vasodilatadores/farmacologia , Animais , Modelos Animais de Doenças , Relação Dose-Resposta a Droga , Hemodinâmica/efeitos dos fármacos , Contração Miocárdica/efeitos dos fármacos , Infarto do Miocárdio/patologia , Infarto do Miocárdio/fisiopatologia , Traumatismo por Reperfusão Miocárdica/patologia , Traumatismo por Reperfusão Miocárdica/fisiopatologia , Miocárdio/patologia , Ratos , Ratos Sprague-Dawley , Função Ventricular Esquerda/efeitos dos fármacosRESUMO
AIM: A limitation of cell therapy for heart disease is the fact that stem cells injected directly into the myocardium are capable of entering the vasculature and migrating to remote organs. We determined whether retention of mesenchymal stem cells (MSCs) in the infarcted myocardium could be improved by implanting the cells in a collagen matrix. METHODS: A myocardial infarction was induced by ligation of the left anterior descending coronary artery in Fischer rats. A total of 7 days after myocardial infarction, saline (n = 12), saline plus 2 million bone marrow-derived rat MSCs labeled with isotopic colloidal nanoparticles containing europium (n = 13), collagen (n = 13) or collagen plus 2 million labeled MSCs (n = 13) were directly injected into the infarcted myocardium. Tissues from the infarcted myocardium, noninfarcted myocardium, lung, liver, spleen and kidney were sampled 4 weeks later. Distribution of grafted MSCs was quantitatively analyzed by measuring the nanoparticle radioactivity in these tissues. Cardiac function was assessed by left ventriculography. RESULTS: There were zero nanoparticles detected in the tissues that received saline or collagen alone into the heart. Nanoparticles were detected in the heart and remote organs in the saline plus MSC group. Labeled cells (expressed as cell number/g tissue weight) were present in three out of 13 lungs (mean of 12,724 +/- 7060 cells/g), four out of 13 livers (12,301 +/- 5924 cells/g), 11 out of 13 spleens (57,228 +/- 11,483 cells/g), zero out of 13 kidneys, 13 out of 13 infarcted myocardium (8,006,835 +/- 1,846,462 cells/g) and nine out of 13 noninfarcted myocardium (167,331 +/- 47,007 cells/g). However, compared with the saline plus MSC group, nanoparticles were detected to a lesser extent in remote organs in collagen plus MSC group. Nanoparticles were detected in two out of 13 lungs (4631 +/- 3176 cells/g; p = NS), zero out of 13 livers (0 cells/g; p <0.05 vs saline plus MSC), four out of 13 spleens (24,060 +/- 17,373 cells/g; p <0.05), zero out of 13 kidneys (p = NS) and five out of 13 noninfarcted myocardium (51,522 +/- 21,548 cells/g; p <0.05). In the collagen plus MSC group, nanoparticles were detected in 12 out of 13 infarcted myocardium (4,830,050 +/- 592,215 cells/g), which did not significantly differ from that in the saline plus MSC group (p = NS). Both saline plus MSCs and collagen alone improved left ventricular ejection fraction compared with saline treatment. However, collagen plus MSCs failed to improve cardiac function. CONCLUSIONS: Collagen matrix as a delivery vehicle significantly reduced the relocation of transplanted MSCs to remote organs and noninfarcted myocardium.
Assuntos
Colágeno/metabolismo , Matriz Extracelular/metabolismo , Transplante de Células-Tronco Mesenquimais , Miocárdio/citologia , Nanopartículas/química , Animais , Feminino , Células-Tronco Mesenquimais/citologia , Células-Tronco Mesenquimais/metabolismo , Modelos Animais , Infarto do Miocárdio/metabolismo , Miocárdio/metabolismo , Ratos , Ratos Endogâmicos F344 , Ratos Endogâmicos LewRESUMO
Human embryonic stem cell (hESC)-derived cardiomyocytes are a promising cell source for cardiac repair. Whether these cells can be transported long distance, survive, and mature in hearts subjected to ischemia/reperfusion with minimal infarction is unknown. Taking advantage of a constitutively GFP-expressing hESC line we investigated whether hESC-derived cardiomyocytes could be shipped and subsequently form grafts when transplanted into the left ventricular wall of athymic nude rats subjected to ischemia/reperfusion with minimal infarction. Co-localization of GFP-epifluorescence and cardiomyocyte-specific marker staining was utilized to analyze hESC-derived cardiomyocyte fate in a rat ischemia/reperfused myocardium. Differentiated, constitutively green fluorescent protein (GFP)-expressing hESCs (hES3-GFP; Envy) containing about 13% cardiomyocytes were differentiated in Singapore, and shipped in culture medium at 4 degrees C to Los Angeles (shipping time approximately 3 days). The cells were dissociated and a cell suspension (2 x 10(6) cells for each rat, n=10) or medium (n=10) was injected directly into the myocardium within the ischemic risk area 5 min after left coronary artery occlusion in athymic nude rats. After 15 min of ischemia, the coronary artery was reperfused. The hearts were harvested at various time points later and processed for histology, immunohistochemical staining, and fluorescence microscopy. In order to assess whether the hESC-derived cardiomyocytes might evade immune surveillance, 2 x 10(6) cells were injected into immune competent Sprague-Dawley rat hearts (n=2), and the hearts were harvested at 4 weeks after cell injection and examined as in the previous procedures. Even following 3 days of shipping, the hESC-derived cardiomyocytes within embryoid bodies (EBs) showed active and rhythmic contraction after incubation in the presence of 5% CO(2) at 37 degrees C. In the nude rats, following cell implantation, H&E, immunohistochemical staining and GFP epifluorescence demonstrated grafts in 9 out of 10 hearts. Cells that demonstrated GFP epifluorescence also stained positive (co-localized) for the muscle marker alpha-actinin and exhibited cross striations (sarcomeres). Furthermore, cells that stained positive for the antibody to GFP (immunohistochemistry) also stained positive for the muscle marker sarcomeric actin and demonstrated cross striations. At 4 weeks engrafted hESCs expressed connexin 43, suggesting the presence of nascent gap junctions between donor and host cells. No evidence of rejection was observed in nude rats as determined by inspection for lymphocytic infiltrate and/or giant cells. In contrast, hESC-derived cardiomyocytes injected into immune competent Sprague-Dawley rats resulted in an overt lymphocytic infiltrate. hESCs-derived cardiomyocytes can survive several days of shipping. Grafted cells survived up to 4 weeks after transplantation in hearts of nude rats subjected to ischemia/reperfusion with minimal infarction. They continued to express cardiac muscle markers and exhibit sarcomeric structure and they were well interspersed with the endogenous myocardium. However, hESC-derived cells did not escape immune surveillance in the xenograft setting in that they elicited a rejection phenomenon in immune competent rats.