Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 9 de 9
Filtrar
Mais filtros








Base de dados
Intervalo de ano de publicação
1.
Environ Microbiol ; 26(3): e16592, 2024 Mar.
Artigo em Inglês | MEDLINE | ID: mdl-38483063

RESUMO

Dendritic stream networks are an intriguing subject for exploring the spatial and temporal variability of the rare and common bacterial biosphere, yet very few such studies have been conducted. We sampled riverine bacterioplankton at 13 sites in a subarctic riverine network across 3 years, with five sampling times each year. Ordinations showed a consistent pattern of downstream shift for both rare and abundant subcommunities. We also detected a temporal signal, with seasonal community shifts reflecting changes in water temperature and groundwater contribution, and an inter-annual pattern where the year 2018 differed from other years. Phylogenetic turnover of the rare subcommunity indicated homogeneous selection, whereas the abundant subcommunity was mainly stochastically structured. Transiently rare taxa were the dominant type of rarity with the highest proportion at the headwater regions. The bacterioplankton community was characterized by a small group of core taxa that occurred at most sites with little temporal variation, a very large number of permanently or transiently rare taxa, and taxa shifting through time between the rare and abundant biosphere. While this basic structure could have been detected with less extensive temporal replication, a comprehensive understanding of the rare biosphere in riverine bacterioplankton can only be achieved via inter-annual, spatially replicated sampling that covers the whole stream network.


Assuntos
Organismos Aquáticos , Biodiversidade , Filogenia , Bactérias/genética , Ecossistema
2.
J Anim Ecol ; 93(1): 57-70, 2024 01.
Artigo em Inglês | MEDLINE | ID: mdl-37975479

RESUMO

The island species-area relationship (ISAR) describes how species richness increases with increasing area of a given island or island-like habitat, such as freshwater lakes. While the ISAR is one of the most common phenomena observed in ecology, there is variation in both the form of the relationship and its underlying mechanisms. We compiled a global data set of benthic macroinvertebrates from 524 shallow freshwater lakes, ranging from 1 to 293,300 ha in area. We used individual-based rarefaction to determine the degree to which ISAR was influenced by mechanisms other than passive sampling (larger islands passively sample more individuals from the regional pool and, therefore, have more species than smaller islands), which would bias results away from expected relationships between rarefied species richness (and other measures that capture relative abundances) and lake area. We also examined how climate may alter the shape of the ISARs. We found that both rarefied species richness (the number of species standardized by area or number of individuals) and a measure of evenness emphasizing common species exhibit shallow slopes in relationships with lake area, suggesting that the expected ISARs in these lakes most likely result from passive sampling. While there was considerable variation among ISARs across the investigated lakes, we found an overall positive rarefied ISAR for lakes in warm (i.e. tropical/subtropical) regions (n = 195), and in contrast, an overall negative rarefied ISAR in cool (i.e. north temperate) lakes (n = 329). This suggested that mechanisms beyond passive sampling (e.g. colonization-extinction dynamics and/or heterogeneity) were more likely to operate in warm lakes. One possible reason for this difference is that the area-dependent intensity of fish predation, which can lead to flatter ISARs, is weaker in warmer relative to cooler lakes. Our study illustrates the importance of understanding both the pattern and potential processes underlying the ISARs of freshwater lakes in different climatic regions. Furthermore, it provides a baseline for understanding how further changes to the ecosystem (i.e. in lake area or climate) might influence biodiversity patterns.


Assuntos
Biodiversidade , Ecossistema , Animais , Lagos , Peixes , Ecologia
3.
Mol Ecol ; 31(24): 6649-6663, 2022 12.
Artigo em Inglês | MEDLINE | ID: mdl-36198099

RESUMO

Water-column bacterial communities are assembled by different mechanisms at different stream network positions, with headwater communities being controlled by mass effects (advection of bacteria from terrestrial soils) while downstream communities are mainly driven by environmental sorting. Conversely, benthic biofilms are colonized largely by the same set of taxa across the entire network. However, direct comparisons of biofilm and bacterioplankton communities along whole stream networks are rare. We used 16S rRNA gene amplicon sequencing to explore the spatiotemporal variability of benthic biofilm (2 weeks old vs. mature biofilm) and water-column communities at different network positions of a subarctic stream from early summer to late autumn. Amplicon sequence variant (ASV) richness of mature biofilm was about 2.5 times higher than that of early biofilm, yet the pattern of seasonality was the same, with the highest richness in midsummer. Biofilm bacterial richness was unrelated to network position whereas bacterioplankton diversity was negatively related to water residence time and distance from the source. This pattern of decreasing diversity along the network was strongest around midsummer and diminished greatly as water level increased towards autumn. Biofilm communities were phylogenetically clustered at all network positions while bacterioplankton assemblages were phylogenetically clustered only at the most downstream site. Both early and mature biofilm communities already differed significantly between upstream (1st order) and midstream (2nd order) sections. Network position was also related to variation in bacterioplankton communities, with upstream sites harbouring substantially more unique taxa (44% of all upstream taxa) than midstream (20%) or downstream (8%) sites. Some of the taxa that were dominant in downstream sections were already present in the upmost headwaters, and even in riparian soils, where they were very rare (relative abundance <0.01%). These patterns in species diversity and taxonomic and phylogenetic community composition of the riverine bacterial metacommunity were particularly strong for water-column communities, whereas both early and mature biofilm exhibited weaker spatial patterns. Our study demonstrated the benefits of studying bacterioplankton and biofilm communities simultaneously to allow testing of ecological hypotheses about biodiversity patterns in freshwater bacteria.


Assuntos
Bactérias , Plâncton , Plâncton/genética , RNA Ribossômico 16S/genética , Filogenia , Estações do Ano , Bactérias/genética , Organismos Aquáticos , Biofilmes , Água , Solo , Ecossistema
4.
Glob Chang Biol ; 28(17): 5159-5171, 2022 09.
Artigo em Inglês | MEDLINE | ID: mdl-35624548

RESUMO

Concentrations of terrestrial-derived dissolved organic carbon (DOC) in freshwater ecosystems have increased consistently, causing freshwater browning. The mechanisms behind browning are complex, but in forestry-intensive regions browning is accelerated by land drainage. Forestry actions in streamside riparian forests alter canopy shading, which together with browning is expected to exert a complex and largely unpredictable control over key ecosystem functions. We conducted a stream mesocosm experiment with three levels of browning (ambient vs. moderate vs. high, with 2.7 and 5.5-fold increase, respectively, in absorbance) crossed with two levels of riparian shading (70% light reduction vs. open canopy) to explore the individual and combined effects of browning and loss of shading on the quantity (algal biomass) and nutritional quality (polyunsaturated fatty acid and sterol content) of the periphytic biofilm. We also conducted a field survey of differently colored (4.7 to 26.2 mg DOC L-1 ) streams to provide a 'reality check' for our experimental findings. Browning reduced greatly the algal biomass, suppressed the availability of essential polyunsaturated fatty acids, especially eicosapentaenoic acid (EPA), and sterols, but increased the availability of terrestrial-derived long-chain saturated fatty acids (LSAFA). In contrast, loss of shading increased primary productivity, which resulted in elevated sterol and EPA contents of the biofilm. The field survey largely repeated the same pattern: biofilm nutritional quality decreased significantly with increasing DOC, as indicated particularly by a decrease of the ω-3:ω-6 ratio and increase in LSAFA content. Algal biomass, in contrast, was mainly controlled by dissolved inorganic nitrogen (DIN) concentration, while DOC concentration was of minor importance. The ongoing browning process is inducing a dramatic reduction in the nutritional quality of the stream biofilm. Such degradation of the major high-quality food source available for stream consumers may reduce the trophic transfer efficiency in stream ecosystems, potentially extending across the stream-forest ecotone.


Assuntos
Ecossistema , Rios , Biofilmes , Florestas , Esteróis
5.
Environ Microbiol ; 23(11): 6694-6706, 2021 11.
Artigo em Inglês | MEDLINE | ID: mdl-34382316

RESUMO

Microbial communities contribute greatly to groundwater quality, but the impacts of land-use practices on bacteria in groundwaters and groundwater-dependent ecosystems remain poorly known. With 16S rRNA gene amplicon sequencing, we assessed bacterial community composition at the groundwater-surface water ecotone of boreal springs impacted by urbanization and agriculture, using spring water nitrate-N as a surrogate of contamination. We also measured the rate of a key ecosystem process, organic matter decomposition. We documented a recurrent pattern across all major bacterial phyla where diversity started to decrease at unexpectedly low nitrate-N concentrations (100-300 µg L-1 ). At 400 NO3 - -N µg L-1 , 25 bacterial exact sequence variants showed a negative response, resulting in a distinct threshold in bacterial community composition. Chthonomonas, Acetobacterales and Hyphomicrobium were the most sensitive taxa, while only three taxa (Duganella, Undibacterium and Thermoanaerobaculaceae) were enriched due to increased contamination. Decomposition rate responded unimodally to increasing nitrate-N concentration, with a peak rate at ~400 NO3 - -N µg L-1 , parallelly with a major shift in bacterial community composition. Our results emphasize the utility of bacterial communities in the assessment of groundwater-dependent ecosystems. They also call for a careful reconsideration of threshold nitrate values for defining groundwater ecosystem health and protecting their microbial biodiversity.


Assuntos
Água Subterrânea , Microbiota , Poluentes Químicos da Água , Bactérias/genética , Água Subterrânea/microbiologia , Microbiota/genética , Nitratos/análise , RNA Ribossômico 16S/genética , Água , Poluentes Químicos da Água/análise
6.
Sci Total Environ ; 639: 100-109, 2018 Oct 15.
Artigo em Inglês | MEDLINE | ID: mdl-29778675

RESUMO

Degradation of freshwater ecosystems has engendered legislative mandates for the protection and management of surface waters while groundwater-dependent ecosystems (GDEs) have received much less attention. This is so despite biodiversity and functioning of GDEs are currently threatened by several anthropogenic stressors, particularly intensified land use and groundwater contamination. We assessed the impacts of land drainage (increased input of dissolved organic carbon, DOC, from peatland drainage) and impaired groundwater chemical quality (NO3--N enrichment from agricultural or urban land use) on biodiversity and ecosystem functioning in 20 southern Finnish cold-water springs using several taxonomic and functional measures. Groundwater contamination decreased macroinvertebrate and bacterial diversity and altered their community composition. Changes in macroinvertebrate and bacterial communities along the gradient of water-quality impairment were caused by the replacement of native with new taxa rather than by mere disappearance of some of the original taxa. Also species richness of habitat specialist (but not headwater generalist) bryophytes decreased due to impaired groundwater quality. Periphyton accrual rate showed a subsidy-stress response to elevated nitrate concentrations, with peak values at around 2500 µg L-1, while drainage-induced spring water brownification (increased DOC) reduced both periphyton accrual and leaf decomposition rates already at very low concentrations. Our results highlight the underutilized potential of ecosystem-level functional measures in GDE bioassessment as they seem to respond to the first signs of spring ecosystem impairment, at least for the anthropogenic stressors studied by us.


Assuntos
Ecossistema , Água Subterrânea/química , Poluentes da Água/análise , Finlândia , Nascentes Naturais , Qualidade da Água
7.
Ecol Appl ; 28(5): 1260-1272, 2018 07.
Artigo em Inglês | MEDLINE | ID: mdl-29645323

RESUMO

The ecological assessment of freshwaters is currently primarily based on biological communities and the reference condition approach (RCA). In the RCA, the communities in streams and lakes disturbed by humans are compared with communities in reference conditions with no or minimal anthropogenic influence. The currently favored rationale is using selected community metrics for which the expected values (E) for each site are typically estimated from environmental variables using a predictive model based on the reference data. The proportional differences between the observed values (O) and E are then derived, and the decision rules for status assessment are based on fixed (typically 10th or 25th) percentiles of the O/E ratios among reference sites. Based on mathematical formulations, illustrations by simulated data and real case studies representing such an assessment approach, we demonstrate that the use of a common quantile of O/E ratios will, under certain conditions, cause severe bias in decision making even if the predictive model would be unbiased. This is because the variance of O/E under these conditions, which seem to be quite common among the published applications, varies systematically with E. We propose a correction method for the bias and compare the novel approach to the conventional one in our case studies, with data from both reference and impacted sites. The results highlight a conceptual issue of employing ratios in the status assessment. In some cases using the absolute deviations instead provides a simple solution for the bias identified and might also be more ecologically relevant and defensible.


Assuntos
Monitoramento Ambiental/métodos , Invertebrados , Rios , Animais , Biodiversidade , Invertebrados/classificação , Invertebrados/fisiologia
8.
Conserv Biol ; 32(4): 883-893, 2018 08.
Artigo em Inglês | MEDLINE | ID: mdl-29484703

RESUMO

Surrogate approaches are widely used to estimate overall taxonomic diversity for conservation planning. Surrogate taxa are frequently selected based on rarity or charisma, whereas selection through statistical modeling has been applied rarely. We used boosted-regression-tree models (BRT) fitted to biological data from 165 springs to identify bryophyte and invertebrate surrogates for taxonomic and functional diversity of boreal springs. We focused on these 2 groups because they are well known and abundant in most boreal springs. The best indicators of taxonomic versus functional diversity differed. The bryophyte Bryum weigelii and the chironomid larva Paratrichocladius skirwithensis best indicated taxonomic diversity, whereas the isopod Asellus aquaticus and the chironomid Macropelopia spp. were the best surrogates of functional diversity. In a scoring algorithm for priority-site selection, taxonomic surrogates performed only slightly better than random selection for all spring-dwelling taxa, but they were very effective in representing spring specialists, providing a distinct improvement over random solutions. However, the surrogates for taxonomic diversity represented functional diversity poorly and vice versa. When combined with cross-taxon complementarity analyses, surrogate selection based on statistical modeling provides a promising approach for identifying groundwater-dependent ecosystems of special conservation value, a key requirement of the EU Water Framework Directive.


Assuntos
Conservação dos Recursos Naturais , Ecossistema , Animais , Biodiversidade , Invertebrados
9.
Glob Chang Biol ; 21(12): 4561-9, 2015 Dec.
Artigo em Inglês | MEDLINE | ID: mdl-26300476

RESUMO

Interest in climate change effects on groundwater has increased dramatically during the last decade. The mechanisms of climate-related groundwater depletion have been thoroughly reviewed, but the influence of global warming on groundwater-dependent ecosystems (GDEs) remains poorly known. Here we report long-term water temperature trends in 66 northern European cold-water springs. A vast majority of the springs (82%) exhibited a significant increase in water temperature during 1968-2012. Mean spring water temperatures were closely related to regional air temperature and global radiative forcing of the corresponding year. Based on three alternative climate scenarios representing low (RCP2.6), intermediate (RCP6) and high-emission scenarios (RCP8.5), we estimate that increase in mean spring water temperature in the region is likely to range from 0.67 °C (RCP2.6) to 5.94 °C (RCP8.5) by 2086. According to the worst-case scenario, water temperature of these originally cold-water ecosystems (regional mean in the late 1970s: 4.7 °C) may exceed 12 °C by the end of this century. We used bryophyte and macroinvertebrate species data from Finnish springs and spring-fed streams to assess ecological impacts of the predicted warming. An increase in spring water temperature by several degrees will likely have substantial biodiversity impacts, causing regional extinction of native, cold-stenothermal spring specialists, whereas species diversity of headwater generalists is likely to increase. Even a slight (by 1 °C) increase in water temperature may eliminate endemic spring species, thus altering bryophyte and macroinvertebrate assemblages of spring-fed streams. Climate change-induced warming of northern regions may thus alter species composition of the spring biota and cause regional homogenization of biodiversity in headwater ecosystems.


Assuntos
Biodiversidade , Briófitas/fisiologia , Aquecimento Global , Invertebrados/fisiologia , Nascentes Naturais , Distribuição Animal , Animais , Finlândia , Modelos Biológicos , Dispersão Vegetal , Estações do Ano , Suécia , Temperatura
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA