Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 6 de 6
Filtrar
Mais filtros








Base de dados
Intervalo de ano de publicação
2.
Environ Health Perspect ; 131(12): 127020, 2023 Dec.
Artigo em Inglês | MEDLINE | ID: mdl-38150315

RESUMO

BACKGROUND: Climate change scenarios illustrate various pathways in terms of global warming ranging from "sustainable development" (Shared Socioeconomic Pathway SSP1-1.9), the best-case scenario, to 'fossil-fueled development' (SSP5-8.5), the worst-case scenario. OBJECTIVES: We examined the extent to which increase in daily average urban summer temperature is associated with future cause-specific mortality and projected heat-related mortality burden for the current warming trend and these two scenarios. METHODS: We did an observational cohort study of 363,754 participants living in six cities in Finland. Using residential addresses, participants were linked to daily temperature records and electronic death records from national registries during summers (1 May to 30 September) 2000 to 2018. For each day of observation, heat index (average daily air temperature weighted by humidity) for the preceding 7 d was calculated for participants' residential area using a geographic grid at a spatial resolution of 1km×1km. We examined associations of the summer heat index with risk of death by cause for all participants adjusting for a wide range of individual-level covariates and in subsidiary analyses using case-crossover design, computed the related period population attributable fraction (PAF), and projected change in PAF from summers 2000-2018 compared with those in 2030-2050. RESULTS: During a cohort total exposure period of 582,111,979 summer days (3,880,746 person-summers), we recorded 4,094 deaths, including 949 from cardiovascular disease. The multivariable-adjusted rate ratio (RR) for high (≥21°C) vs. reference (14-15°C) heat index was 1.70 (95% CI: 1.28, 2.27) for cardiovascular mortality, but it did not reach statistical significance for noncardiovascular deaths, RR=1.14 (95% CI: 0.96, 1.36), a finding replicated in case-crossover analysis. According to projections for 2030-2050, PAF of summertime cardiovascular mortality attributable to high heat will be 4.4% (1.8%-7.3%) under the sustainable development scenario, but 7.6% (3.2%-12.3%) under the fossil-fueled development scenario. In the six cities, the estimated annual number of summertime heat-related cardiovascular deaths under the two scenarios will be 174 and 298 for a total population of 1,759,468 people. DISCUSSION: The increase in average urban summer temperature will raise heat-related cardiovascular mortality burden. The estimated magnitude of this burden is >1.5 times greater if future climate change is driven by fossil fuels rather than sustainable development. https://doi.org/10.1289/EHP12080.


Assuntos
Doenças Cardiovasculares , Temperatura Alta , Humanos , Temperatura , Mudança Climática , Finlândia/epidemiologia , Fósseis , Mortalidade
3.
Environ Int ; 173: 107837, 2023 03.
Artigo em Inglês | MEDLINE | ID: mdl-36921561

RESUMO

Climate change will have adverse impacts on human health, which are amplified in cities. For these impacts, there are direct, indirect, and deferred pathways. The first category is well-studied, while indirect and deferred impacts are not well-understood. Moreover, the factors moderating the impacts have received little attention, although understanding these factors is critical for adaptation. We developed a conceptual framework that shows the pathways of climate impacts on human health, focusing specifically on the factors of urban environment moderating the emergence and severity of these health impacts. Based on the framework and literature review, we illustrate the mechanisms of direct, indirect, and deferred health impact occurrence and the factors that exacerbate or alleviate the severity of these impacts, thus presenting valuable insights for anticipatory adaptation. We conclude that an integrated systemic approach to preventing health risks from climate change can provide co-benefits for adaptation and address multiple health risks. Such an approach should be mainstreamed horizontally to all sectors of urban planning and should account for the spatiotemporal aspects of policy and planning decisions and city complexity.


Assuntos
Aclimatação , Mudança Climática , Humanos , Cidades
4.
Sci Total Environ ; 569-570: 507-517, 2016 Nov 01.
Artigo em Inglês | MEDLINE | ID: mdl-27362632

RESUMO

Fundamental knowledge on the determinants of air temperatures across spatial and temporal scales is essential in climate change mitigation and adaptation. Spatial-based statistical modelling provides an efficient approach for the analysis and prediction of air temperatures in human-modified environments at high spatial accuracy. The aim of the study was firstly, to analyse the environmental factors affecting extreme air temperature conditions in a coastal high-latitude city and secondly, to explore the applicability of generalized additive model (GAM) in the study of urban-rural temperatures. We utilized air temperature data from 50 permanent temperature logger stations and extensive geospatial environmental data on different scales from Turku, SW Finland. We selected five temperature situations (cases) and altogether 12 urban and natural explanatory variables for the analyses. The results displayed that (i) water bodies and topographical conditions were often more important than urban variables in controlling the spatial variability of extreme air temperatures, (ii) case specificity of the explanatory variables and their scales should be considered in the analyses and (iii) GAM was highly suitable in quantifying and visualizing the relations between urban-rural temperatures and environmental determinants at local scales. The results promote the use of GAMs in spatial-based statistical modelling of air temperature in future.

5.
Ambio ; 45(6): 742-52, 2016 Oct.
Artigo em Inglês | MEDLINE | ID: mdl-26939924

RESUMO

A clear understanding of processes at multiple scales and levels is of special significance when conceiving strategies for human-environment interactions. However, understanding and application of the scale concept often differ between administrative-political and ecological disciplines. These mirror major differences in potential solutions whether and how scales can, at all, be made congruent. As a result, opportunities of seeking "goodness-of-fit" between different concepts of governance should perhaps be reconsidered in the light of a potential "generality of mis-fit." This article reviews the interdisciplinary considerations inherent in the concept of scale in its ecological, as well as administrative-political, significance and argues that issues of how to manage "mis-fit" should be awarded more emphasis in social-ecological research and management practices. These considerations are exemplified by the case of reindeer husbandry in Fennoscandia. Whilst an indigenous small-scale practice, reindeer husbandry involves multi-level ecological and administrative-political complexities-complexities that we argue may arise in any multi-level system.


Assuntos
Conservação dos Recursos Naturais , Ecossistema , Meio Social , Criação de Animais Domésticos/métodos , Criação de Animais Domésticos/estatística & dados numéricos , Animais , Conservação dos Recursos Naturais/métodos , Conservação dos Recursos Naturais/estatística & dados numéricos , Finlândia , Agricultura Florestal/métodos , Agricultura Florestal/estatística & dados numéricos , Internacionalidade , Modelos Teóricos , Noruega , Formulação de Políticas , Rena/crescimento & desenvolvimento , Suécia , Árvores/crescimento & desenvolvimento
6.
Ecol Evol ; 6(1): 143-58, 2016 01.
Artigo em Inglês | MEDLINE | ID: mdl-26811780

RESUMO

According to some treatises, arctic and alpine sub-biomes are ecologically similar, whereas others find them highly dissimilar. Most peculiarly, large areas of northern tundra highlands fall outside of the two recent subdivisions of the tundra biome. We seek an ecologically natural resolution to this long-standing and far-reaching problem. We studied broad-scale patterns in climate and vegetation along the gradient from Siberian tundra via northernmost Fennoscandia to the alpine habitats of European middle-latitude mountains, as well as explored those patterns within Fennoscandian tundra based on climate-vegetation patterns obtained from a fine-scale vegetation map. Our analyses reveal that ecologically meaningful January-February snow and thermal conditions differ between different types of tundra. High precipitation and mild winter temperatures prevail on middle-latitude mountains, low precipitation and usually cold winters prevail on high-latitude tundra, and Scandinavian mountains show intermediate conditions. Similarly, heath-like plant communities differ clearly between middle latitude mountains (alpine) and high-latitude tundra vegetation, including its altitudinal extension on Scandinavian mountains. Conversely, high abundance of snowbeds and large differences in the composition of dwarf shrub heaths distinguish the Scandinavian mountain tundra from its counterparts in Russia and the north Fennoscandian inland. The European tundra areas fall into three ecologically rather homogeneous categories: the arctic tundra, the oroarctic tundra of northern heights and mountains, and the genuinely alpine tundra of middle-latitude mountains. Attempts to divide the tundra into two sub-biomes have resulted in major discrepancies and confusions, as the oroarctic areas are included in the arctic tundra in some biogeographic maps and in the alpine tundra in others. Our analyses based on climate and vegetation criteria thus seem to resolve the long-standing biome delimitation problem, help in consistent characterization of research sites, and create a basis for further biogeographic and ecological research in global tundra environments.

SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA