Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 11 de 11
Filtrar
Mais filtros








Base de dados
Intervalo de ano de publicação
1.
Neuron ; 112(9): 1426-1443.e11, 2024 May 01.
Artigo em Inglês | MEDLINE | ID: mdl-38442714

RESUMO

Glucocorticoids are important for proper organ maturation, and their levels are tightly regulated during development. Here, we use human cerebral organoids and mice to study the cell-type-specific effects of glucocorticoids on neurogenesis. We show that glucocorticoids increase a specific type of basal progenitors (co-expressing PAX6 and EOMES) that has been shown to contribute to cortical expansion in gyrified species. This effect is mediated via the transcription factor ZBTB16 and leads to increased production of neurons. A phenome-wide Mendelian randomization analysis of an enhancer variant that moderates glucocorticoid-induced ZBTB16 levels reveals causal relationships with higher educational attainment and altered brain structure. The relationship with postnatal cognition is also supported by data from a prospective pregnancy cohort study. This work provides a cellular and molecular pathway for the effects of glucocorticoids on human neurogenesis that relates to lasting postnatal phenotypes.


Assuntos
Córtex Cerebral , Glucocorticoides , Neurogênese , Proteína com Dedos de Zinco da Leucemia Promielocítica , Neurogênese/efeitos dos fármacos , Neurogênese/fisiologia , Humanos , Animais , Camundongos , Glucocorticoides/farmacologia , Córtex Cerebral/efeitos dos fármacos , Córtex Cerebral/metabolismo , Córtex Cerebral/citologia , Feminino , Proteína com Dedos de Zinco da Leucemia Promielocítica/metabolismo , Gravidez , Neurônios/metabolismo , Neurônios/efeitos dos fármacos , Organoides/efeitos dos fármacos , Organoides/metabolismo , Regulação da Expressão Gênica no Desenvolvimento/efeitos dos fármacos , Células-Tronco Neurais/efeitos dos fármacos , Células-Tronco Neurais/metabolismo , Masculino
2.
Mol Psychiatry ; 2024 Feb 05.
Artigo em Inglês | MEDLINE | ID: mdl-38317011

RESUMO

Humanized mouse models can be used to explore human gene regulatory elements (REs), which frequently lie in non-coding and less conserved genomic regions. Epigenetic modifications of gene REs, also in the context of gene x environment interactions, have not yet been explored in humanized mouse models. We applied high-accuracy measurement of DNA methylation (DNAm) via targeted bisulfite sequencing (HAM-TBS) to investigate DNAm in three tissues/brain regions (blood, prefrontal cortex and hippocampus) of mice carrying the human FK506-binding protein 5 (FKBP5) gene, an important candidate gene associated with stress-related psychiatric disorders. We explored DNAm in three functional intronic glucocorticoid-responsive elements (at introns 2, 5, and 7) of FKBP5 at baseline, in cases of differing genotype (rs1360780 single nucleotide polymorphism), and following application of the synthetic glucocorticoid dexamethasone. We compared DNAm patterns in the humanized mouse (N = 58) to those in human peripheral blood (N = 447 and N = 89) and human postmortem brain prefrontal cortex (N = 86). Overall, DNAm patterns in the humanized mouse model seem to recapitulate DNAm patterns observed in human tissue. At baseline, this was to a higher extent in brain tissue. The animal model also recapitulated effects of dexamethasone on DNAm, especially in peripheral blood and to a lesser extent effects of genotype on DNAm. The humanized mouse model could thus assist in reverse translation of human findings in psychiatry that involve genetic and epigenetic regulation in non-coding elements.

3.
Proc Natl Acad Sci U S A ; 120(49): e2305773120, 2023 Dec 05.
Artigo em Inglês | MEDLINE | ID: mdl-38011552

RESUMO

Exposure to stressful life events increases the risk for psychiatric disorders. Mechanistic insight into the genetic factors moderating the impact of stress can increase our understanding of disease processes. Here, we test 3,662 single nucleotide polymorphisms (SNPs) from preselected expression quantitative trait loci in massively parallel reporter assays to identify genetic variants that modulate the activity of regulatory elements sensitive to glucocorticoids, important mediators of the stress response. Of the tested SNP sequences, 547 were located in glucocorticoid-responsive regulatory elements of which 233 showed allele-dependent activity. Transcripts regulated by these functional variants were enriched for those differentially expressed in psychiatric disorders in the postmortem brain. Phenome-wide Mendelian randomization analysis in 4,439 phenotypes revealed potentially causal associations specifically in neurobehavioral traits, including major depression and other psychiatric disorders. Finally, a functional gene score derived from these variants was significantly associated with differences in the physiological stress response, suggesting that these variants may alter disease risk by moderating the individual set point of the stress response.


Assuntos
Glucocorticoides , Transtornos Mentais , Humanos , Ensaios de Triagem em Larga Escala , Sequências Reguladoras de Ácido Nucleico , Locos de Características Quantitativas , Transtornos Mentais/genética , Polimorfismo de Nucleotídeo Único , Estudo de Associação Genômica Ampla , Predisposição Genética para Doença
4.
Commun Biol ; 6(1): 1031, 2023 10 11.
Artigo em Inglês | MEDLINE | ID: mdl-37821711

RESUMO

Overweight and obesity are associated with altered stress reactivity and increased inflammation. However, it is not known whether stress-induced changes in brain function scale with BMI and if such associations are driven by peripheral cytokines. Here, we investigate multimodal stress responses in a large transdiagnostic sample using predictive modeling based on spatio-temporal profiles of stress-induced changes in activation and functional connectivity. BMI is associated with increased brain responses as well as greater negative affect after stress and individual response profiles are associated with BMI in females (pperm < 0.001), but not males. Although stress-induced changes reflecting BMI are associated with baseline cortisol, there is no robust association with peripheral cytokines. To conclude, alterations in body weight and energy metabolism might scale acute brain responses to stress more strongly in females compared to males, echoing observational studies. Our findings highlight sex-dependent associations of stress with differences in endocrine markers, largely independent of peripheral inflammation.


Assuntos
Encéfalo , Obesidade , Masculino , Humanos , Feminino , Índice de Massa Corporal , Encéfalo/diagnóstico por imagem , Inflamação , Citocinas
5.
Eur J Neurosci ; 58(3): 2662-2676, 2023 08.
Artigo em Inglês | MEDLINE | ID: mdl-37414581

RESUMO

FKBP5 is an important stress-regulatory gene implicated in stress-related psychiatric diseases. Single nucleotide polymorphisms of the FKBP5 gene were shown to interact with early life stress to alter the glucocorticoid-related stress response and moderate disease risk. Demethylation of cytosine-phosphate-guanine-dinucleotides (CpGs) in regulatory glucocorticoid-responsive elements was suggested to be the mediating epigenetic mechanism for long-term stress effects, but studies on Fkbp5 DNA methylation (DNAm) in rodents are so far limited. We evaluated the applicability of high-accuracy DNA methylation measurement via targeted bisulfite sequencing (HAM-TBS), a next-generation sequencing-based technology, to allow a more in-depth characterisation of the DNA methylation of the murine Fkbp5 locus in three different tissues (blood, frontal cortex and hippocampus). In this study, we not only increased the number of evaluated sites in previously described regulatory regions (in introns 1 and 5), but also extended the evaluation to novel, possibly relevant regulatory regions of the gene (in intron 8, the transcriptional start site, the proximal enhancer and CTCF-binding sites within the 5'UTR). We here describe the assessment of HAM-TBS assays for a panel of 157 CpGs with possible functional relevance in the murine Fkbp5 gene. DNAm profiles were tissue-specific, with lesser differences between the two brain regions than between the brain and blood. Moreover, we identified DNAm changes in the Fkbp5 locus after early life stress exposure in the frontal cortex and blood. Our findings indicate that HAM-TBS is a valuable tool for broader exploration of the DNAm of the murine Fkbp5 locus and its involvement in the stress response.


Assuntos
Metilação de DNA , Glucocorticoides , Animais , Camundongos , Sulfitos , Epigênese Genética
6.
Acta Neuropathol ; 145(4): 439-459, 2023 04.
Artigo em Inglês | MEDLINE | ID: mdl-36729133

RESUMO

Identification and characterisation of novel targets for treatment is a priority in the field of psychiatry. FKBP5 is a gene with decades of evidence suggesting its pathogenic role in a subset of psychiatric patients, with potential to be leveraged as a therapeutic target for these individuals. While it is widely reported that FKBP5/FKBP51 mRNA/protein (FKBP5/1) expression is impacted by psychiatric disease state, risk genotype and age, it is not known in which cell types and sub-anatomical areas of the human brain this occurs. This knowledge is critical to propel FKBP5/1-targeted treatment development. Here, we performed an extensive, large-scale postmortem study (n = 1024) of FKBP5/1, examining neocortical areas (BA9, BA11 and ventral BA24/BA24a) derived from subjects that lived with schizophrenia, major depression or bipolar disorder. With an extensive battery of RNA (bulk RNA sequencing, single-nucleus RNA sequencing, microarray, qPCR, RNAscope) and protein (immunoblot, immunohistochemistry) analysis approaches, we thoroughly investigated the effects of disease state, ageing and genotype on cortical FKBP5/1 expression including in a cell type-specific manner. We identified consistently heightened FKBP5/1 levels in psychopathology and with age, but not genotype, with these effects strongest in schizophrenia. Using single-nucleus RNA sequencing (snRNAseq; BA9 and BA11) and targeted histology (BA9, BA24a), we established that these disease and ageing effects on FKBP5/1 expression were most pronounced in excitatory superficial layer neurons of the neocortex, and this effect appeared to be consistent in both the granular and agranular areas examined. We then found that this increase in FKBP5 levels may impact on synaptic plasticity, as FKBP5 gex levels strongly and inversely correlated with dendritic mushroom spine density and brain-derived neurotrophic factor (BDNF) levels in superficial layer neurons in BA11. These findings pinpoint a novel cellular and molecular mechanism that has potential to open a new avenue of FKBP51 drug development to treat cognitive symptoms in psychiatric disorders.


Assuntos
Transtornos Mentais , Neocórtex , Humanos , Transtornos Mentais/genética , Envelhecimento/genética , Neurônios , Genótipo , Polimorfismo de Nucleotídeo Único
7.
Int J Mol Sci ; 23(19)2022 Sep 28.
Artigo em Inglês | MEDLINE | ID: mdl-36232765

RESUMO

Several studies have shown that children from pregnancies with estimated first-trimester risk based on fetal nuchal translucency thickness and abnormal maternal serum pregnancy protein and hormone levels maintain a higher likelihood of adverse outcomes, even if initial testing for known genetic conditions is negative. We used the Finnish InTraUterine cohort (ITU), which is a comprehensively characterized perinatal cohort consisting of 943 mothers and their babies followed throughout pregnancy and 18 months postnatally, including mothers shortlisted for prenatal genetic testing but cleared for major aneuploidies (cases: n = 544, 57.7%) and control pregnancies (n = 399, 42.3%). Using genome-wide genotyping and RNA sequencing of first-trimester and term placental tissue, combined with medical information from registry data and maternal self-report data, we investigated potential negative medical outcomes and genetic susceptibility to disease and their correlates in placenta gene expression. Case mothers did not present with higher levels of depression, perceived stress, or anxiety during pregnancy. Case children were significantly diagnosed more often with congenital malformations of the circulatory system (4.12 (95% CI [1.22−13.93]) higher hazard) and presented with significantly more copy number duplications as compared to controls (burden analysis, based on all copy number variants (CNVs) with at most 10% frequency, 823 called duplications in 297 cases versus 626 called duplications in 277 controls, p = 0.01). Fifteen genes showed differential gene expression (FDR < 0.1) in association with congenital malformations in first-trimester but not term placenta. These were significantly enriched for genes associated with placental dysfunction. In spite of normal routine follow-up prenatal testing results in early pregnancy, case children presented with an increased likelihood of negative outcomes, which should prompt vigilance in follow-up during pregnancy and after birth.


Assuntos
Variações do Número de Cópias de DNA , Complicações na Gravidez , Criança , Variações do Número de Cópias de DNA/genética , Feminino , Testes Genéticos , Hormônios , Humanos , Placenta , Gravidez , Complicações na Gravidez/genética , Primeiro Trimestre da Gravidez/genética , Transcriptoma
8.
Proc Natl Acad Sci U S A ; 117(38): 23280-23285, 2020 09 22.
Artigo em Inglês | MEDLINE | ID: mdl-31399550

RESUMO

Prenatal stress exposure is associated with risk for psychiatric disorders later in life. This may be mediated in part via enhanced exposure to glucocorticoids (GCs), which are known to impact neurogenesis. We aimed to identify molecular mediators of these effects, focusing on long-lasting epigenetic changes. In a human hippocampal progenitor cell (HPC) line, we assessed the short- and long-term effects of GC exposure during neurogenesis on messenger RNA (mRNA) expression and DNA methylation (DNAm) profiles. GC exposure induced changes in DNAm at 27,812 CpG dinucleotides and in the expression of 3,857 transcripts (false discovery rate [FDR] ≤ 0.1 and absolute fold change [FC] expression ≥ 1.15). HPC expression and GC-affected DNAm profiles were enriched for changes observed during human fetal brain development. Differentially methylated sites (DMSs) with GC exposure clustered into 4 trajectories over HPC differentiation, with transient as well as long-lasting DNAm changes. Lasting DMSs mapped to distinct functional pathways and were selectively enriched for poised and bivalent enhancer marks. Lasting DMSs had little correlation with lasting expression changes but were associated with a significantly enhanced transcriptional response to a second acute GC challenge. A significant subset of lasting DMSs was also responsive to an acute GC challenge in peripheral blood. These tissue-overlapping DMSs were used to compute a polyepigenetic score that predicted exposure to conditions associated with altered prenatal GCs in newborn's cord blood DNA. Overall, our data suggest that early exposure to GCs can change the set point of future transcriptional responses to stress by inducing lasting DNAm changes. Such altered set points may relate to differential vulnerability to stress exposure later in life.


Assuntos
Glucocorticoides/efeitos adversos , Hipocampo/efeitos dos fármacos , Neurogênese/efeitos dos fármacos , Efeitos Tardios da Exposição Pré-Natal/genética , Efeitos Tardios da Exposição Pré-Natal/fisiopatologia , Estudos de Coortes , Metilação de DNA/efeitos dos fármacos , Feminino , Regulação da Expressão Gênica , Hipocampo/crescimento & desenvolvimento , Humanos , Masculino , Gravidez , Efeitos Tardios da Exposição Pré-Natal/etiologia , Efeitos Tardios da Exposição Pré-Natal/metabolismo , Estresse Fisiológico/efeitos dos fármacos
9.
Clin Epigenetics ; 11(1): 83, 2019 05 23.
Artigo em Inglês | MEDLINE | ID: mdl-31122292

RESUMO

BACKGROUND: Epigenetic mechanisms may play a major role in the biological embedding of early-life stress (ELS). One proposed mechanism is that glucocorticoid (GC) release following ELS exposure induces long-lasting alterations in DNA methylation (DNAm) of important regulatory genes of the stress response. Here, we investigate the dynamics of GC-dependent methylation changes in key regulatory regions of the FKBP5 locus in which ELS-associated DNAm changes have been reported. RESULTS: We repeatedly measured DNAm in human peripheral blood samples from 2 independent cohorts exposed to the GC agonist dexamethasone (DEX) using a targeted bisulfite sequencing approach, complemented by data from Illumina 450K arrays. We detected differentially methylated CpGs in enhancers co-localizing with GC receptor binding sites after acute DEX treatment (1 h, 3 h, 6 h), which returned to baseline levels within 23 h. These changes withstood correction for immune cell count differences. While we observed main effects of sex, age, body mass index, smoking, and depression symptoms on FKBP5 methylation levels, only the functional FKBP5 SNP (rs1360780) moderated the dynamic changes following DEX. This genotype effect was observed in both cohorts and included sites previously shown to be associated with ELS. CONCLUSION: Our study highlights that DNAm levels within regulatory regions of the FKBP5 locus show dynamic changes following a GC challenge and suggest that factors influencing the dynamics of this regulation may contribute to the previously reported alterations in DNAm associated with current and past ELS exposure.


Assuntos
Metilação de DNA/efeitos dos fármacos , Glucocorticoides/farmacologia , Estresse Psicológico/genética , Proteínas de Ligação a Tacrolimo/genética , Adulto , Estudos de Coortes , Dexametasona/efeitos adversos , Epigênese Genética/efeitos dos fármacos , Feminino , Glucocorticoides/agonistas , Glucocorticoides/metabolismo , Humanos , Masculino , Pessoa de Meia-Idade , Análise de Sequência com Séries de Oligonucleotídeos , Polimorfismo de Nucleotídeo Único , Sequências Reguladoras de Ácido Nucleico , Análise de Sequência de DNA , Estresse Psicológico/metabolismo , Adulto Jovem
10.
Proc Natl Acad Sci U S A ; 116(23): 11370-11379, 2019 06 04.
Artigo em Inglês | MEDLINE | ID: mdl-31113877

RESUMO

Aging and psychosocial stress are associated with increased inflammation and disease risk, but the underlying molecular mechanisms are unclear. Because both aging and stress are also associated with lasting epigenetic changes, a plausible hypothesis is that stress along the lifespan could confer disease risk through epigenetic effects on molecules involved in inflammatory processes. Here, by combining large-scale analyses in human cohorts with experiments in cells, we report that FKBP5, a protein implicated in stress physiology, contributes to these relations. Across independent human cohorts (total n > 3,000), aging synergized with stress-related phenotypes, measured with childhood trauma and major depression questionnaires, to epigenetically up-regulate FKBP5 expression. These age/stress-related epigenetic effects were recapitulated in a cellular model of replicative senescence, whereby we exposed replicating human fibroblasts to stress (glucocorticoid) hormones. Unbiased genome-wide analyses in human blood linked higher FKBP5 mRNA with a proinflammatory profile and altered NF-κB-related gene networks. Accordingly, experiments in immune cells showed that higher FKBP5 promotes inflammation by strengthening the interactions of NF-κB regulatory kinases, whereas opposing FKBP5 either by genetic deletion (CRISPR/Cas9-mediated) or selective pharmacological inhibition prevented the effects on NF-κB. Further, the age/stress-related epigenetic signature enhanced FKBP5 response to NF-κB through a positive feedback loop and was present in individuals with a history of acute myocardial infarction, a disease state linked to peripheral inflammation. These findings suggest that aging/stress-driven FKBP5-NF-κB signaling mediates inflammation, potentially contributing to cardiovascular risk, and may thus point to novel biomarker and treatment possibilities.


Assuntos
Envelhecimento/genética , Doenças Cardiovasculares/genética , Epigênese Genética/genética , Inflamação/genética , NF-kappa B/genética , Estresse Psicológico/genética , Proteínas de Ligação a Tacrolimo/genética , Regulação para Cima/genética , Senescência Celular/genética , Pré-Escolar , Transtorno Depressivo Maior/genética , Feminino , Estudo de Associação Genômica Ampla/métodos , Humanos , Masculino , Fatores de Risco , Transdução de Sinais/genética
11.
Epigenetics Chromatin ; 11(1): 39, 2018 07 04.
Artigo em Inglês | MEDLINE | ID: mdl-29973294

RESUMO

BACKGROUND: The ability to accurately and efficiently measure DNA methylation is critical to advance the understanding of this epigenetic mechanism and its contribution to common diseases. Here, we present a highly accurate method to measure methylation using bisulfite sequencing (termed HAM-TBS). This novel method is able to assess DNA methylation in multiple samples with high accuracy in a cost-effective manner. We developed this assay for the FKBP5 locus, an important gene in the regulation of the stress system and previously linked to stress-related disorders, but the method is applicable to any locus of interest. RESULTS: HAM-TBS enables multiplexed analyses of up to 96 samples and regions spanning 10 kb using the Illumina MiSeq. It incorporates a triplicate bisulfite conversion step, pooled target enrichment via PCR, PCR-free library preparation and a minimum coverage of 1000×. TBS was able to resolve DNA methylation levels with a mean accuracy of 0.72%. Using this method, we designed and validated a targeted panel to specifically assess regulatory regions within the FKBP5 locus that are not covered in commercially available DNA methylation arrays. CONCLUSIONS: HAM-TBS represents a highly accurate, medium-throughput sequencing approach for robust detection of DNA methylation changes in specific target regions.


Assuntos
Metilação de DNA , Análise de Sequência de DNA/métodos , Proteínas de Ligação a Tacrolimo/genética , Confiabilidade dos Dados , Humanos , Análise de Sequência de DNA/economia , Sulfitos
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA