Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 3 de 3
Filtrar
Mais filtros








Base de dados
Intervalo de ano de publicação
1.
J Org Chem ; 87(19): 13168-13177, 2022 Oct 07.
Artigo em Inglês | MEDLINE | ID: mdl-36166406

RESUMO

We present an experimental and computational study to investigate noncovalent interactions between silyl groups that are often employed as "innocent" protecting groups. We chose an extended cyclooctatetraene (COT)-based molecular balance comprising unfolded (1,4-disubstituted) and folded (1,6-disubstituted) valance bond isomers that typically display remote and close silyl group contacts, respectively. The thermodynamic equilibria were determined using nuclear magnetic resonance measurements. Additionally, we utilized Boltzmann weighted symmetry-adapted perturbation theory (SAPT) at the sSAPT0/aug-cc-pVDZ level of theory to dissect and quantify noncovalent interactions. Apart from the extremely bulky tris(trimethylsilyl)silyl "supersilyl" group, there is a preference for the folded 1,6-COT valence isomer, with London dispersion interactions being the main stabilizing factor. This makes silyl groups excellent dispersion energy donors, a finding that needs to be taken into account in synthesis planning.

2.
J Org Chem ; 87(7): 4670-4679, 2022 04 01.
Artigo em Inglês | MEDLINE | ID: mdl-35293748

RESUMO

We present an experimental and computational study of a cyclooctatetraene (COT)-based molecular balance disubstituted with commonly used silyl groups. Such groups often serve as protecting groups and are typically considered innocent bystanders. Our motivation here is to determine the actual steric effects of such groups by employing a molecular balance. While in the unfolded 1,4-valence isomer the silyl groups are far apart (dσ-σ ≥ 5.15 Å), the folded 1,6-isomer is affected greatly by noncovalent interactions due to close σ-σ contacts (dσ-σ ≤ 2.58 Å). In order to investigate the thermodynamic equilibrium between the 1,6- and 1,4-valence isomers, we employed temperature-dependent nuclear magnetic resonance measurements. Additionally, we assessed the nature of attractive and repulsive interactions in 1,6-disilyl-COT derivatives via a combination of local energy decomposition analysis (LED) and symmetry-adapted perturbation theory (SAPT) at the DLPNO-CCSD(T)/def2-TZVP and sSAPT0/aug-cc-pVDZ levels of theory. We identified London dispersion interactions as the main contributor to the molecular stability of the folded states, whereas Pauli exchange repulsion and a resulting internal strain favor the unfolded diastereomer.


Assuntos
Termodinâmica , Isomerismo
3.
ChemMedChem ; 17(6): e202100644, 2022 03 18.
Artigo em Inglês | MEDLINE | ID: mdl-34699131

RESUMO

Tuberculosis represents one of the ten most common courses of death worldwide and the emergence of multidrug-resistant M. tuberculosis makes the discovery of novel anti-tuberculosis active structures an urgent priority. Here, we show that (+)-floyocidin B representing the first example of a novel dihydroisoquinoline class of fungus-derived natural products, displays promising antitubercular hit properties. (+)-Floyocidin B was identified by activity-guided extract screening and its structure was unambiguously determined by total synthesis. The absolute configuration was deduced from a key synthesis intermediate by single crystal X-ray diffraction analysis. A hit series was generated by the isolation of further natural congeners and the synthesis of analogs of (+)-floyocidin B. Extensive biological and physicochemical profiling of this series revealed first structure-activity relationships and set the basis for further optimization and development of this novel antitubercular scaffold.


Assuntos
Produtos Biológicos , Mycobacterium tuberculosis , Tuberculose , Antituberculosos/química , Produtos Biológicos/farmacologia , Humanos , Testes de Sensibilidade Microbiana , Relação Estrutura-Atividade
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA