Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 3 de 3
Filtrar
Mais filtros








Base de dados
Intervalo de ano de publicação
1.
Biomater Adv ; 153: 213555, 2023 Oct.
Artigo em Inglês | MEDLINE | ID: mdl-37478769

RESUMO

Physiologically relevant in vitro hemocompatibility assessment of biomaterials remains challenging. We present a new setup that enables standardized whole blood incubation of biomedical materials under flow. A blood volume of 2 mL is recirculated over test surfaces in a custom-made parallel plate incubation system to determine the activation of hemostasis and inflammation. Controlled physiological shear rates between 125 s-1 and 1250 s-1 and minimized contact to air are combined with a natural-like pumping process. A unique feature of this setup allows tracing adhesion of blood cells to test surfaces microscopically in situ. Validation testing was performed in comparison to previously applied whole blood incubation methodologies. Experiments with the newly developed setup showed that even small obstacles to blood flow activate blood (independent of materials-induced blood activation levels); that adhesion of blood cells to biomaterials equilibrates within 5 to 10 min; that high shear rates (1250 compared to 375 s-1) induce platelet activation; and that hemolysis, platelet factor 4 (PF4) release and platelet loss - but not thrombin formation - depend on shear rate (within the range investigated, 125 to 1250 s-1).


Assuntos
Materiais Biocompatíveis , Plaquetas , Materiais Biocompatíveis/efeitos adversos , Ativação Plaquetária , Hemostasia
2.
Biomater Sci ; 8(1): 101-108, 2019 Dec 17.
Artigo em Inglês | MEDLINE | ID: mdl-31674601

RESUMO

Multiphasic in vitro models with cross-scale heterogeneity in matrix properties and/or cellular composition can reflect the structural and compositional complexity of living tissues more faithfully, thereby creating new options for pathobiology and drug development studies. Herein, a new class of tunable microgel-in-gel materials is reported that build on a versatile platform of multifunctional poly(ethylene glycol)-heparin gel types and integrates monodisperse, cell-laden microgels within cell-laden bulk hydrogel matrices. A novel microfluidic approach was developed to enable the high-throughput fabrication of microgels of in situ adjustable diameters, stiffness, degradability and biomolecular functionalization. By choosing structure and composition of the microgel and the bulk gel compartments independently, our microgel-in-gel arrangements provide cross-scale control over tissue-mimetic features and pave the way for culture systems with designed mesoenvironmental characteristics. The potentialities of the introduced approach are exemplarily shown by creating a reductionistic in vitro model of vascularized prostate cancer tissue.


Assuntos
Microgéis/química , Neoplasias da Próstata/patologia , Engenharia Tecidual/métodos , Humanos , Hidrogéis , Masculino , Técnicas Analíticas Microfluídicas/instrumentação , Modelos Biológicos
3.
Biomaterials ; 29(28): 3888-95, 2008 Oct.
Artigo em Inglês | MEDLINE | ID: mdl-18606448

RESUMO

Here we present a new technique to generate surface-bound collagen I fibril matrices with differing structural characteristics. Aligned collagen fibrils were deposited on planar substrates from collagen solutions streaming through a microfluidic channel system. Collagen solution concentration, degree of gelation, shear rate and pre-coating of the substrate were demonstrated to determine the orientation and density of the immobilized fibrils. The obtained matrices were imaged using confocal reflection microscopy and atomic force microscopy. Image analysis techniques were applied to evaluate collagen fibril orientation and coverage. As expected, the degree of collagen fibril orientation increased with increasing flow rates of the solution while the matrix density increased at higher collagen solution concentrations and on hydrophobic polymer pre-coatings. Additionally, length of the immobilized collagen fibrils increased with increasing solution concentration and gelation time.


Assuntos
Colágeno Tipo I/química , Colágenos Fibrilares/química , Microfluídica , Animais , Bovinos , Resistência ao Cisalhamento , Soluções/química , Propriedades de Superfície
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA