Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 7 de 7
Filtrar
Mais filtros








Base de dados
Intervalo de ano de publicação
1.
PLoS Pathog ; 18(2): e1010380, 2022 02.
Artigo em Inglês | MEDLINE | ID: mdl-35202448

RESUMO

S. flexneri is an important human pathogen that causes bacillary dysentery. During infection, S. flexneri invades colonic epithelial cells, hijacks the host cell cytoskeleton to move in the cytosol of infected cells, and spreads from cell to cell through formation of membrane protrusions that project into adjacent cells and resolve into double membrane vacuoles (DMVs). S. flexneri cell-to-cell spread requires the integrity of the bacterial type three secretion system (T3SS). However, the exact role of the T3SS effector proteins in the dissemination process remains poorly understood. Here, we investigated the role of the T3SS effector protein IpgB1 in S. flexneri dissemination. IpgB1 was previously characterized as a guanine nucleotide exchange factor (GEF) that contributes to invasion. In addition to the invasion defect, we showed that the ipgB1 mutant formed smaller infection foci in HT-29 cells. Complementation of this phenotype required the GEF activity of IpgB1. Using live confocal microscopy, we showed that the ipgB1 mutant is specifically impaired in DMV escape. Depletion of Rac1, the host cell target of IpgB1 during invasion, as well as pharmacological inhibition of Rac1 signaling, reduced cell-to-cell spread and DMV escape. In a targeted siRNA screen, we uncovered that RhoA depletion restored ipgB1 cell-to-cell spread and DMV escape, revealing a critical role for the IpgB1-Rac1 axis in antagonizing RhoA-mediated restriction of DMV escape. Using an infant rabbit model of shigellosis, we showed that the ipgB1 mutant formed fewer and smaller infection foci in the colon of infected animals, which correlated with attenuated symptoms of disease, including epithelial fenestration and bloody diarrhea. Our results demonstrate that, in addition to its role during invasion, IpgB1 modulates Rho family small GTPase signaling to promote cell-to-cell spread, DMV escape, and S. flexneri pathogenesis.


Assuntos
Disenteria Bacilar , Shigella flexneri , Proteínas rac1 de Ligação ao GTP , Animais , Proteínas de Bactérias/genética , Proteínas de Bactérias/metabolismo , Disenteria Bacilar/microbiologia , Células Epiteliais/metabolismo , Humanos , Coelhos , Shigella flexneri/genética , Shigella flexneri/metabolismo , Sistemas de Secreção Tipo III/genética , Sistemas de Secreção Tipo III/metabolismo , Vacúolos/metabolismo , Proteínas rac1 de Ligação ao GTP/genética , Proteínas rac1 de Ligação ao GTP/metabolismo
2.
PLoS Pathog ; 18(2): e1010324, 2022 02.
Artigo em Inglês | MEDLINE | ID: mdl-35130324

RESUMO

The bacterial pathogen Shigella flexneri causes 270 million cases of bacillary dysentery worldwide every year, resulting in more than 200,000 deaths. S. flexneri pathogenic properties rely on its ability to invade epithelial cells and spread from cell to cell within the colonic epithelium. This dissemination process relies on actin-based motility in the cytosol of infected cells and formation of membrane protrusions that project into adjacent cells and resolve into double-membrane vacuoles (DMVs) from which the pathogen escapes, thereby achieving cell-to-cell spread. S. flexneri dissemination is facilitated by the type 3 secretion system (T3SS) through poorly understood mechanisms. Here, we show that the T3SS effector IpgD facilitates the resolution of membrane protrusions into DMVs during S. flexneri dissemination. The phosphatidylinositol 4-phosphatase activity of IpgD decreases PtdIns(4,5)P2 levels in membrane protrusions, thereby counteracting de novo cortical actin formation in protrusions, a process that restricts the resolution of protrusions into DMVs. Finally, using an infant rabbit model of shigellosis, we show that IpgD is required for efficient cell-to-cell spread in vivo and contributes to the severity of dysentery.


Assuntos
Proteínas de Bactérias/metabolismo , Extensões da Superfície Celular/metabolismo , Fosfatidilinositol 4,5-Difosfato/metabolismo , Monoéster Fosfórico Hidrolases/metabolismo , Shigella flexneri/metabolismo , Sistemas de Secreção Tipo III/metabolismo , Actinas/metabolismo , Animais , Proteínas de Bactérias/genética , Extensões da Superfície Celular/microbiologia , Colo/microbiologia , Modelos Animais de Doenças , Disenteria Bacilar/microbiologia , Células HT29 , Interações Hospedeiro-Patógeno , Humanos , Monoéster Fosfórico Hidrolases/genética , Coelhos , Shigella flexneri/genética
3.
mBio ; 10(4)2019 08 27.
Artigo em Inglês | MEDLINE | ID: mdl-31455648

RESUMO

Various bacterial pathogens display an intracellular lifestyle and spread from cell to cell through actin-based motility (ABM). ABM requires actin polymerization at the bacterial pole and is mediated by the expression of bacterial factors that hijack the host cell actin nucleation machinery or exhibit intrinsic actin nucleation properties. It is increasingly recognized that bacterial ABM factors, in addition to having a crucial task during the intracellular phase of infection, display "moonlighting" adhesin functions, such as bacterial aggregation, biofilm formation, and host cell adhesion/invasion. Here, we review our current knowledge of ABM factors and their additional functions, and we propose that intracellular ABM functions have evolved from ancestral, extracellular adhesin functions.


Assuntos
Actinas/metabolismo , Bactérias/patogenicidade , Fenômenos Fisiológicos Bacterianos , Biofilmes/crescimento & desenvolvimento , Aderência Bacteriana , Proteínas de Bactérias/metabolismo , Interações Hospedeiro-Patógeno , Humanos , Listeria/patogenicidade , Listeria/fisiologia , Shigella/patogenicidade , Shigella/fisiologia
4.
Infect Immun ; 87(7)2019 07.
Artigo em Inglês | MEDLINE | ID: mdl-30988059

RESUMO

Shigella flexneri is an intracellular bacterial pathogen that invades epithelial cells in the colonic mucosa, leading to bloody diarrhea. A previous study showed that S. flexneri forms biofilms in the presence of bile salts, through an unknown mechanism. Here, we investigated the potential role of adhesin-like autotransporter proteins in S. flexneri biofilm formation. BLAST search analysis revealed that the S. flexneri 2457T genome harbors 4 genes, S1242, S1289, S2406, and icsA, encoding adhesin-like autotransporter proteins. Deletion mutants of the S1242, S1289, S2406 and icsA genes were generated and tested for biofilm formation. Phenotypic analysis of the mutant strains revealed that disruption of icsA abolished bile salt-induced biofilm formation. IcsA is an outer membrane protein secreted at the bacterial pole that is required for S. flexneri actin-based motility during intracellular infection. In extracellular biofilms, IcsA was also secreted at the bacterial pole and mediated bacterial cell-cell contacts and aggregative growth in the presence of bile salts. Dissecting individual roles of bile salts showed that deoxycholate is a robust biofilm inducer compared to cholate. The release of the extracellular domain of IcsA through IcsP-mediated cleavage was greater in the presence of cholate, suggesting that the robustness of biofilm formation was inversely correlated with IcsA processing. Accordingly, deletion of icsP abrogated IcsA processing in biofilms and enhanced biofilm formation.


Assuntos
Proteínas de Bactérias/fisiologia , Ácidos e Sais Biliares/farmacologia , Biofilmes/efeitos dos fármacos , Biofilmes/crescimento & desenvolvimento , Proteínas de Ligação a DNA/fisiologia , Shigella flexneri/fisiologia , Fatores de Transcrição/fisiologia , Sistemas de Secreção Tipo V/metabolismo , Proteínas da Membrana Bacteriana Externa/metabolismo , Proteínas de Bactérias/genética , Ácidos e Sais Biliares/metabolismo , Proteínas de Ligação a DNA/genética , Shigella flexneri/efeitos dos fármacos , Shigella flexneri/metabolismo , Fatores de Transcrição/genética
5.
Infect Immun ; 86(5)2018 05.
Artigo em Inglês | MEDLINE | ID: mdl-29531136

RESUMO

Ethanolamine is a ubiquitous and essential molecule within a host. Significantly, bacterial pathogens exploit ethanolamine during infection to promote growth and regulate virulence. The ethanolamine permease EutH is dispensable for growth in vitro under standard conditions, whereas EutH is required for ethanolamine utilization at low pH. These findings suggested a model in which EutH facilitates diffusion of ethanolamine into the bacterial cell in acidic environments. To date, the ecological significance of this model has not been thoroughly investigated, and the importance of EutH to bacterial growth under physiologically relevant conditions is not known. During infection, immune cells internalize invading bacteria within an acidic, nutrient-depleted vacuole called the phagosome. Here, we investigated the hypothesis that EutH promotes bacterial survival following phagocytosis. Our findings indicate that EutH is important for survival and replication of the facultative intracellular pathogens Salmonella enterica serovar Typhimurium and Listeria monocytogenes during prolonged or transient exposure to the phagosome, respectively. Furthermore, in agreement with EutH being important in the acidic environment, neutralization of the vacuole abolished the requirement for EutH. Significantly, consistent with a role for EutH in promoting intramacrophage survival, EutH was not required during S Typhimurium local intestinal infection but specifically conferred an advantage upon dissemination to peripheral organs. These findings reveal a physiologically relevant and conserved role for EutH in spatiotemporal niche adaptation during infection.


Assuntos
Proteínas de Bactérias/fisiologia , Transporte Biológico/fisiologia , Etanolaminas/metabolismo , Listeria monocytogenes/patogenicidade , Macrófagos/patologia , Salmonella enterica/patogenicidade , Vacúolos/microbiologia
6.
Mol Microbiol ; 96(4): 728-43, 2015 May.
Artigo em Inglês | MEDLINE | ID: mdl-25662512

RESUMO

Elevated levels of the second messenger c-di-GMP activate biosynthesis of an unknown exopolysaccharide (EPS) in the food-borne pathogen Listeria monocytogenes. This EPS strongly protects cells against disinfectants and desiccation, indicating its potential significance for listerial persistence in the environment and for food safety. We analyzed the potential phylogenetic origin of this EPS, determined its complete structure, characterized genes involved in its biosynthesis and hydrolysis and identified diguanylate cyclases activating its synthesis. Phylogenetic analysis of EPS biosynthesis proteins suggests that they have evolved within monoderms. Scanning electron microscopy revealed that L. monocytogenes EPS is cell surface-bound. Secreted carbohydrates represent exclusively cell-wall debris. Based on carbohydrate composition, linkage and NMR analysis, the structure of the purified EPS is identified as a ß-1,4-linked N-acetylmannosamine chain decorated with terminal α-1,6-linked galactose. All genes of the pssA-E operon are required for EPS production and so is a separately located pssZ gene. We show that PssZ has an EPS-specific glycosylhydrolase activity. Exogenously added PssZ prevents EPS-mediated cell aggregation and disperses preformed aggregates, whereas an E72Q mutant in the presumed catalytic residue is much less active. The diguanylate cyclases DgcA and DgcB, whose genes are located next to pssZ, are primarily responsible for c-di-GMP-dependent EPS production.


Assuntos
GMP Cíclico/análogos & derivados , Listeria monocytogenes/genética , Listeria monocytogenes/metabolismo , Polissacarídeos Bacterianos/biossíntese , Polissacarídeos Bacterianos/química , Proteínas de Bactérias/genética , Proteínas de Bactérias/metabolismo , GMP Cíclico/genética , GMP Cíclico/metabolismo , Proteínas de Escherichia coli/genética , Proteínas de Escherichia coli/metabolismo , Glicosiltransferases/genética , Hexosaminas/análise , Listeria monocytogenes/química , Listeria monocytogenes/ultraestrutura , Microscopia Eletrônica de Varredura , Óperon , Fósforo-Oxigênio Liases/genética , Fósforo-Oxigênio Liases/metabolismo , Filogenia , Polissacarídeos Bacterianos/genética , Polissacarídeos Bacterianos/ultraestrutura
7.
PLoS Pathog ; 10(8): e1004301, 2014 Aug.
Artigo em Inglês | MEDLINE | ID: mdl-25101646

RESUMO

We characterized key components and major targets of the c-di-GMP signaling pathways in the foodborne pathogen Listeria monocytogenes, identified a new c-di-GMP-inducible exopolysaccharide responsible for motility inhibition, cell aggregation, and enhanced tolerance to disinfectants and desiccation, and provided first insights into the role of c-di-GMP signaling in listerial virulence. Genome-wide genetic and biochemical analyses of c-di-GMP signaling pathways revealed that L. monocytogenes has three GGDEF domain proteins, DgcA (Lmo1911), DgcB (Lmo1912) and DgcC (Lmo2174), that possess diguanylate cyclase activity, and three EAL domain proteins, PdeB (Lmo0131), PdeC (Lmo1914) and PdeD (Lmo0111), that possess c-di-GMP phosphodiesterase activity. Deletion of all phosphodiesterase genes (ΔpdeB/C/D) or expression of a heterologous diguanylate cyclase stimulated production of a previously unknown exopolysaccharide. The synthesis of this exopolysaccharide was attributed to the pssA-E (lmo0527-0531) gene cluster. The last gene of the cluster encodes the fourth listerial GGDEF domain protein, PssE, that functions as an I-site c-di-GMP receptor essential for exopolysaccharide synthesis. The c-di-GMP-inducible exopolysaccharide causes cell aggregation in minimal medium and impairs bacterial migration in semi-solid agar, however, it does not promote biofilm formation on abiotic surfaces. The exopolysaccharide also greatly enhances bacterial tolerance to commonly used disinfectants as well as desiccation, which may contribute to survival of L. monocytogenes on contaminated food products and in food-processing facilities. The exopolysaccharide and another, as yet unknown c-di-GMP-dependent target, drastically decrease listerial invasiveness in enterocytes in vitro, and lower pathogen load in the liver and gallbladder of mice infected via an oral route, which suggests that elevated c-di-GMP levels play an overall negative role in listerial virulence.


Assuntos
Proteínas de Bactérias/metabolismo , GMP Cíclico/análogos & derivados , Regulação Bacteriana da Expressão Gênica/fisiologia , Listeria monocytogenes/patogenicidade , Listeriose/metabolismo , Animais , Proteínas de Bactérias/genética , Cromatografia Líquida de Alta Pressão , GMP Cíclico/metabolismo , Modelos Animais de Doenças , Proteínas de Escherichia coli/metabolismo , Feminino , Listeria monocytogenes/genética , Listeriose/genética , Camundongos , Camundongos Endogâmicos BALB C , Fósforo-Oxigênio Liases/metabolismo , Transdução de Sinais/fisiologia , Virulência/fisiologia
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA