Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 4 de 4
Filtrar
Mais filtros








Base de dados
Intervalo de ano de publicação
1.
Methods Mol Biol ; 2752: 11-42, 2024.
Artigo em Inglês | MEDLINE | ID: mdl-38194025

RESUMO

The analysis of circulating tumor cells (CTCs) has shown potential for detection of cancer spread, prognosis, therapeutic target selection, and monitoring of treatment response. CTCs can be obtained repeatedly by simple blood draws as so-called "liquid biopsy." Thus, they can serve as a surrogate material for primary or metastatic tissue biopsies. In addition, isolation of CTCs provides the possibility to investigate those cells which may hold the (molecular) traits responsible for metastatic progression and ultimately patient death. As such, CTCs represent a target of utmost importance in cancer research and therapy. In this chapter, we describe a workflow for the enrichment of CTCs with the FDA-cleared CellSearch® system followed by the isolation of single CTCs using the DEPArray™ technology enabling further molecular single-cell analyses.


Assuntos
Células Neoplásicas Circulantes , Humanos , Biópsia , Separação Celular , Biópsia Líquida , Fenótipo
2.
Cancers (Basel) ; 13(6)2021 Mar 19.
Artigo em Inglês | MEDLINE | ID: mdl-33808748

RESUMO

Circulating tumor microemboli (CTMs) are clusters of cancer cells detached from solid tumors, whose study can reveal mechanisms underlying metastatization. As they frequently comprise unknown fractions of leukocytes, the analysis of copy number alterations (CNAs) is challenging. To address this, we titrated known numbers of leukocytes into cancer cells (MDA-MB-453 and MDA-MB-36, displaying high and low DNA content, respectively) generating tumor fractions from 0-100%. After low-pass sequencing, ichorCNA was identified as the best algorithm to build a linear mixed regression model for tumor fraction (TF) prediction. We then isolated 53 CTMs from blood samples of six early-stage breast cancer patients and predicted the TF of all clusters. We found that all clusters harbor cancer cells between 8 and 48%. Furthermore, by comparing the identified CNAs of CTMs with their matched primary tumors, we noted that only 31-71% of aberrations were shared. Surprisingly, CTM-private alterations were abundant (30-63%), whereas primary tumor-private alterations were rare (4-12%). This either indicates that CTMs are disseminated from further progressed regions of the primary tumor or stem from cancer cells already colonizing distant sites. In both cases, CTM-private mutations may inform us about specific metastasis-associated functions of involved genes that should be explored in follow-up and mechanistic studies.

3.
Nat Commun ; 11(1): 4977, 2020 10 05.
Artigo em Inglês | MEDLINE | ID: mdl-33020483

RESUMO

Although thousands of breast cancer cells disseminate and home to bone marrow until primary surgery, usually less than a handful will succeed in establishing manifest metastases months to years later. To identify signals that support survival or outgrowth in patients, we profile rare bone marrow-derived disseminated cancer cells (DCCs) long before manifestation of metastasis and identify IL6/PI3K-signaling as candidate pathway for DCC activation. Surprisingly, and similar to mammary epithelial cells, DCCs lack membranous IL6 receptor expression and mechanistic dissection reveals IL6 trans-signaling to regulate a stem-like state of mammary epithelial cells via gp130. Responsiveness to IL6 trans-signals is found to be niche-dependent as bone marrow stromal and endosteal cells down-regulate gp130 in premalignant mammary epithelial cells as opposed to vascular niche cells. PIK3CA activation renders cells independent from IL6 trans-signaling. Consistent with a bottleneck function of microenvironmental DCC control, we find PIK3CA mutations highly associated with late-stage metastatic cells while being extremely rare in early DCCs. Our data suggest that the initial steps of metastasis formation are often not cancer cell-autonomous, but also depend on microenvironmental signals.


Assuntos
Interleucina-6/metabolismo , Células-Tronco Neoplásicas/metabolismo , Células-Tronco Neoplásicas/patologia , Transdução de Sinais , Medula Óssea/patologia , Mama/citologia , Neoplasias da Mama/patologia , Classe I de Fosfatidilinositol 3-Quinases/genética , Classe I de Fosfatidilinositol 3-Quinases/metabolismo , Receptor gp130 de Citocina/metabolismo , Células Epiteliais/metabolismo , Células Epiteliais/patologia , Feminino , Humanos , Interleucina-6/genética , Mutação , Metástase Neoplásica/genética , Receptores de Interleucina-6/deficiência , Receptores de Interleucina-6/metabolismo , Células Estromais/metabolismo , Microambiente Tumoral
4.
Cancers (Basel) ; 12(4)2020 Apr 09.
Artigo em Inglês | MEDLINE | ID: mdl-32283863

RESUMO

Evidence suggests that the DNA end-binding protein p53-binding protein 1 (53BP1) is down-regulated in subsets of breast cancer. Circulating tumor cells (CTCs) provide accessible "biopsy material" to track cell traits and functions and their alterations during treatment. Here, we prospectively monitored the 53BP1 status in CTCs from 67 metastatic breast cancer (MBC) patients with HER2- CTCs and known hormone receptor (HR) status of the primary tumor and/or metastases before, during, and at the end of chemotherapeutic treatment with Eribulin. Nuclear 53BP1 staining and genomic integrity were evaluated by immunocytochemical and whole-genome-amplification-based polymerase chain reaction (PCR) analysis, respectively. Comparative analysis of CTCs from patients with triple-negative and HR+ tumors revealed elevated 53BP1 levels in CTCs from patients with HR+ metastases, particularly following chemotherapeutic treatment. Differences in nuclear 53BP1 signals did not correlate with genomic integrity in CTCs at baseline or with nuclear γH2AX signals in MBC cell lines, indicating that 53BP1 detected features beyond DNA damage. Kaplan-Meier analysis revealed an increasing association between nuclear 53BP1-positivity and progression-free survival (PFS) during chemotherapy until the final visit. Our data suggest that 53BP1 detection in CTCs could be a useful marker to capture dynamic changes of chemotherapeutic responsiveness in triple-negative and HR+ MBC.

SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA