Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 6 de 6
Filtrar
Mais filtros








Base de dados
Intervalo de ano de publicação
1.
Int J Mol Sci ; 25(5)2024 Feb 26.
Artigo em Inglês | MEDLINE | ID: mdl-38473945

RESUMO

A reversed-phase high-performance liquid chromatographic (HPLC) method was developed for the simultaneous determination of the potential impurities of dexketoprofen, including the distomer R-ketoprofen. After screening the separation capability of four polysaccharide columns (Lux Amylose-1, Lux Amylose-2, Lux Cellulose-1 and Lux Cellulose-2) in polar organic and in reversed-phase modes, appropriate enantioseparation was observed only on the Lux Amylose-2 column in an acidified acetonitrile/water mixture. A detailed investigation of the mobile phase composition and temperature for enantio- and chemoselectivity showed many unexpected observations. It was observed that both the resolution and the enantiomer elution order can be fine-tuned by varying the temperature and mobile phase composition. Moreover, hysteresis of the retention times and enantioselectivity was also observed in reversed-phase mode using methanol/water mixtures on amylose-type columns. This could indicate that the three-dimensional structure of the amylose column can change by transitioning from a polar organic to a reversed-phase mode, which affects the enantioseparation process. Temperature-dependent enantiomer elution order and rare enthalpic/entropic controlled enantioseparation in the operative temperature range were also observed in reversed-phase mode. To find the best methodological conditions for the determination of dexketoprofen impurities, a full factorial optimization design was performed. Using the optimized parameters (Lux Amylose-2 column with water/acetonitrile/acetic acid 50/50/0.1 (v/v/v) at a 1 mL/min flow rate at 20 °C), baseline separations were achieved between all compounds within 15 min. Our newly developed HPLC method was validated according to the current guidelines, and its application was tested on commercially available pharmaceutical formulations. According to the authors' knowledge, this is the first study to report hysteretic behavior on polysaccharide columns in reversed-phase mode.


Assuntos
Amilose , Cromatografia de Fase Reversa , Cetoprofeno/análogos & derivados , Trometamina , Amilose/química , Temperatura , Polissacarídeos/química , Celulose/química , Cromatografia Líquida de Alta Pressão/métodos , Água , Acetonitrilas , Estereoisomerismo
2.
Sci Rep ; 13(1): 20305, 2023 11 20.
Artigo em Inglês | MEDLINE | ID: mdl-37985681

RESUMO

Opiate alkaloids and their synthetic derivatives are still widely used in pain management, drug addiction, and abuse. To avoid serious side effects, compounds with properly designed pharmacological profiles at the opioid receptor subtypes are long needed. Here a series of 17-N-substituted derivatives of normorphine and noroxymorphone analogues with five- and six-membered ring substituents have been synthesized for structure-activity study. Some compounds showed nanomolar affinity to MOR, DOR and KOR in in vitro competition binding experiments with selective agonists [3H]DAMGO, [3H]Ile5,6-deltorphin II and [3H]HS665, respectively. Pharmacological characterization of the compounds in G-protein signaling was determined by [35S]GTPγS binding assays. The normorphine analogues showed higher affinity to KOR compared to MOR and DOR, while most of the noroxymorphone derivatives did not bind to KOR. The presence of 14-OH substituent resulted in a shift in the pharmacological profiles in the agonist > partial agonist > antagonist direction compared to the parent compounds. A molecular docking-based in silico method was also applied to estimate the pharmacological profile of the compounds. Docking energies and the patterns of the interacting receptor atoms, obtained with experimentally determined active and inactive states of MOR, were used to explain the observed pharmacological features of the compounds.


Assuntos
Receptores Opioides mu , Receptores Opioides , Receptores Opioides mu/metabolismo , Simulação de Acoplamento Molecular , Receptores Opioides/metabolismo , Ligação Competitiva , Relação Estrutura-Atividade , Receptores Opioides kappa/metabolismo
3.
Pharmaceutics ; 15(1)2023 Jan 13.
Artigo em Inglês | MEDLINE | ID: mdl-36678907

RESUMO

Particle size reduction is a commonly used process to improve the solubility and the dissolution of drug formulations. The solubility of a drug in the gastrointestinal tract is a crucial parameter, because it can greatly influence the bioavailability. This work provides a comprehensive investigation of the effect of the particle size, pH, biorelevant media and polymers (PVA and PVPK-25) on the solubility and dissolution of drug formulations using three model compounds with different acid-base characteristics (papaverine hydrochloride, furosemide and niflumic acid). It was demonstrated that micronization does not change the equilibrium solubility of a drug, but it results in a faster dissolution. In contrast, nanonization can improve the equilibrium solubility of a drug, but the selection of the appropriate excipient used for nanonization is essential, because out of the two used polymers, only the PVPK-25 had an increasing effect on the solubility. This phenomenon can be explained by the molecular structure of the excipients. Based on laser diffraction measurements, PVPK-25 could also inhibit the aggregation of the particles more effectively than PVA, but none of the polymers could hold the nanonized samples in the submicron range until the end of the measurements.

4.
Electrophoresis ; 42(17-18): 1818-1825, 2021 09.
Artigo em Inglês | MEDLINE | ID: mdl-34109644

RESUMO

R-solriamfetol is a recently approved drug used for the treatment of excessive sleepiness associated with narcolepsy and sleep apnea. Herein, a capillary electrophoretic method was developed, enabling the simultaneous analysis of the API and its S-enantiomer in addition to the enantiomers of its major impurity phenylalaninol. Twenty-nine different cyclodextrins (CDs), including native, neutral, and charged ones were screened as potential chiral selectors, and the best results were obtained with sulfated CDs. Randomly sulfated-ß-CD exhibited outstanding enantioresolution, the peaks of phenylalaninol enantiomers inserted between the two peaks of solriamfetol enantiomers, while sulfated-γ-CD (S-γ-CD) showed remarkable resolution values in a much shorter analysis time with the optimal enantiomer migration order. Among the single isomer sulfated CD derivatives, substituent dependent enantiomer migration order reversal could also be observed in the case of heptakis(6-O-sulfo)-ß-CD (HS-ß-CD) or heptakis(2,3-O-dimethyl-6-O-sulfo)-ß-CD (HDMS-ß-CD) with R-,S-solriamfetol, and heptakis(2,3-O-diacetyl-6-O-sulfo)-ß-CD (HDAS-ß-CD) resulting S-,R-solriamfetol migration order. The sulfated-γ-CD system was chosen for method optimization applying orthogonal experimental design. The optimized method (45 mM Tris-acetate buffer, pH 4.5, 4 mM S-γ-CD, 21°C, +19.5 kV) was capable for the baseline separation of solriamfetol and phenylalaninol enantiomers within 7 min. The optimized method was validated according to the ICH guidelines and successfully applied for the analysis of pharmaceutical preparation (Sunosi® 75 mg tablet), thus it may serve as a routine procedure for the laboratories of regulatory authorities as well as in Pharmacopoeias.


Assuntos
gama-Ciclodextrinas/química , Carbamatos , Eletroforese Capilar , Fenilalanina/análogos & derivados , Estereoisomerismo , Sulfatos
5.
Chem Biodivers ; 18(7): e2100135, 2021 Jul.
Artigo em Inglês | MEDLINE | ID: mdl-34018677

RESUMO

The C-3 phenolic hydroxy group containing morphine derivatives (morphine, oxymorphone, naloxone, naltrexone) are excellent candidates for the synthesis of 3-O-functionalized molecules. Achieving free carboxylic group containing derivatives gives the opportunity for further modification and conjugation that could be used for immunization and immunoassays. For this purpose ethyl bromo- and chloroacetate can be used as O-alkylating agents. Hydrolyzing the products affords the appropriate free carboxylic group containing 3-O-carboxyalkyl derivatives. As these molecules contain an acidic and a basic functional group the protonation macro- and microconstants were determined too, using pH-potentiometry and NMR-pH titration, beside fully characterizing their structure using IR, CD, NMR and HR-MS measurements.


Assuntos
Derivados da Morfina , Concentração de Íons de Hidrogênio , Estrutura Molecular , Derivados da Morfina/síntese química , Derivados da Morfina/química
6.
Molecules ; 25(17)2020 Sep 02.
Artigo em Inglês | MEDLINE | ID: mdl-32887468

RESUMO

Vaccination could be a promising alternative warfare against drug addiction and abuse. For this purpose, so-called haptens can be used. These molecules alone do not induce the activation of the immune system, this occurs only when they are attached to an immunogenic carrier protein. Hence obtaining a free amino or carboxylic group during the structural transformation is an important part of the synthesis. Namely, these groups can be used to form the requisite peptide bond between the hapten and the carrier protein. Focusing on this basic principle, six nor-morphine compounds were treated with ethyl acrylate and ethyl bromoacetate, while the prepared esters were hydrolyzed to obtain the N-carboxymethyl- and N-carboxyethyl-normorphine derivatives which are considered as potential haptens. The next step was the coupling phase with glycine ethyl ester, but the reactions did not work or the work-up process was not accomplishable. As an alternative route, the normorphine-compounds were N-alkylated with N-(chloroacetyl)glycine ethyl ester. These products were hydrolyzed in alkaline media and after the work-up process all of the derivatives contained the free carboxylic group of the glycine side chain. The acid-base properties of these molecules are characterized in detail. In the N-carboxyalkyl derivatives, the basicity of the amino and phenolate site is within an order of magnitude. In the glycine derivatives the basicity of the amino group is significantly decreased compared to the parent compounds (i.e., morphine, oxymorphone) because of the electron withdrawing amide group. The protonation state of the carboxylate group significantly influences the basicity of the amino group. All of the glycine ester and the glycine carboxylic acid derivatives are currently under biological tests.


Assuntos
Haptenos/química , Morfina/química , Prótons , Analgésicos Opioides/química , Desmetilação , Ésteres/síntese química , Ésteres/química , Titulometria
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA