Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 8 de 8
Filtrar
Mais filtros








Base de dados
Intervalo de ano de publicação
1.
Front Immunol ; 14: 1257526, 2023.
Artigo em Inglês | MEDLINE | ID: mdl-37936714

RESUMO

Introduction: Following heart transplantation, a cascade of immunological responses is initiated influencing the clinical outcome and long-term survival of the transplanted patients. The anti-inflammatory cytokine interleukin-10 (IL-10) was shown to be elevated in the blood of heart transplant recipients directly after transplantation but the releasing cell populations and the composition of lymphocyte subsets following transplantation have not been thoroughly studied. Methods: We identified immune cells by immunophenotyping and analyzed intracellular IL-10 production in peripheral blood mononuclear cells (PBMC) of heart transplanted patients (n= 17) before, directly after and 24h post heart transplantation. The cells were stimulated with lipopolysaccharide or PMA/Ionomycin to enhance cytokine production within leukocytes in vitro. Results and discussion: We demonstrate that intermediate monocytes (CD14highCD16+), but not CD8+ T cells, CD4+ T cells, CD56+ NK cells or CD20+ B cells appeared to be the major IL-10 producers within patients PBMC following heart transplantation. Consequently, the absolute monocyte count and the ratio of intermediate monocytes to classical monocytes (CD14+CD16-) were specifically increased in comparison to pre transplant levels. Hence, this population of monocytes, which has not been in the focus of heart transplantation so far, may be an important modulator of clinical outcome and long-term survival of heart transplant recipients. Alteration of blood-circulating monocytes towards a CD14highCD16+ phenotype could therefore shift the pro-inflammatory immune response towards induction of graft tolerance, and may pave the way for the optimization of immunosuppression.


Assuntos
Transplante de Coração , Monócitos , Humanos , Leucócitos Mononucleares , Interleucina-10 , Receptores de Lipopolissacarídeos , Receptores de IgG , Citocinas
2.
Front Cardiovasc Med ; 10: 1245618, 2023.
Artigo em Inglês | MEDLINE | ID: mdl-37808880

RESUMO

Background: Ex vivo lung perfusion (EVLP) uses continuous normothermic perfusion to reduce ischemic damage and to improve post-transplant outcomes, specifically for marginal donor lungs after the donation after circulatory death. Despite major efforts, the optimal perfusion protocol and the composition of the perfusate in clinical lung transplantation have not been identified. Our study aims to compare the concentration levels of cytokine/chemokine in different perfusion solutions during EVLP, after 1 and 9 h of cold static preservation (CSP) in a porcine cardiac arrest model, and to correlate inflammatory parameters to oxygenation capacities. Methods: Following cardiac arrest, the lungs were harvested and were categorized into two groups: immediate (I-EVLP) and delayed EVLP (D-EVLP), after 1 and 9 h of CSP, respectively. The D-EVLP lungs were perfused with either Steen or modified Custodiol-N solution containing only dextran (CD) or dextran and albumin (CDA). The cytokine/chemokine levels were analyzed at baseline (0 h) and after 1 and 4 h of EVLP using Luminex-based multiplex assays. Results: Within 4 h of EVLP, the concentration levels of TNF-α, IL-6, CXCL8, IFN-γ, IL-1α, and IL-1ß increased significantly (P < 0.05) in all experimental groups. The CD solution contained lower concentration levels of TNF-α, IL-6, CXCL8, IFN-γ, IL-2, IL-12, IL-10, IL-4, IL-1RA, and IL-18 (P < 0.05) compared with those of the Steen solution. The concentration levels of all experimental groups have correlated negatively with the oxygenation capacity values (P < 0.05). Protein concentration levels did not reach statistical significance for I-EVLP vs. D-EVLP and CD vs. CDA solutions. Conclusion: In a porcine cardiac arrest model, a longer period of CSP prior to EVLP did not result in an enhanced protein secretion into perfusates. The CD solution reduced the cytokine/chemokine secretion most probably by iron chelators and/or by the protecting effects of dextran. Supplementing with albumin did not further reduce the cytokine/chemokine secretion into perfusates. These findings may help in optimizing the preservation procedure of the lungs, thereby increasing the donor pool of organs.

3.
Front Immunol ; 14: 1120010, 2023.
Artigo em Inglês | MEDLINE | ID: mdl-37033958

RESUMO

Introduction: SARS-CoV-2 vaccination is the leading strategy to prevent severe courses after SARS-CoV-2 infection. In our study, we analyzed humoral and cellular immune responses in detail to three consecutive homologous or heterologous SARS-CoV-2 vaccinations and breakthrough infections. Methods: Peripheral blood samples of n=20 individuals were analyzed in the time course of three SARS-CoV-2 vaccinations and/or breakthrough infection. S1-, RBD-, S2- and N-specific IgG antibodies were quantified using Luminex-based multiplex assays and electrochemiluminescence multiplex assays for surrogate neutralization in plasma. Changes in cellular immune components were determined via flow cytometry of whole blood samples. Results: All individuals (n=20) responded to vaccination with increasing S1-/RBD-/S2-specific IgG levels, whereas specific plasma IgA displayed individual variability. The third dose increased antibody inhibitory capacity (AIC) against immune-escape variants Beta and Omicron BA.1 independently of age. The mRNA-primed vaccination induced IgG and IgA immunity more efficiently, whereas vector-primed individuals displayed higher levels of memory T and B cells. Vaccinees showed SARS-CoV-2-specific T cell responses, which were further improved and specified after Omicron breakthrough infections in parallel to the appearance of new variant-specific antibodies. Discussion: In conclusion, the third vaccination was essential to increase IgG levels, mandatory to boost AIC against immune-escape variants, and induced SARS-CoV-2-specific T cells. Breakthrough infection with Omicron generates additional spike specificities covering all known variants.


Assuntos
Vacinas contra COVID-19 , COVID-19 , Humanos , SARS-CoV-2 , Infecções Irruptivas , COVID-19/prevenção & controle , Imunidade Celular , Imunoglobulina G , Vacinação , Imunoglobulina A
4.
Eur J Immunol ; 53(7): e2250097, 2023 07.
Artigo em Inglês | MEDLINE | ID: mdl-37119053

RESUMO

Early kinetics of lymphocyte subsets involved in tolerance and rejection following heart transplantation (HTx) are barely defined. Here, we aimed to delineate the early alloimmune response immediately after HTx. Therefore, blood samples from 23 heart-transplanted patients were collected before (pre-), immediately (T0), 24 hours (T24), and 3 weeks (3 wks) after HTx. Immunophenotyping was performed using flow cytometry. A significant increase was detected for terminally differentiated (TEMRA) CD4+ or CD8+ T cells and CD56dim CD16+ NK cells immediately after HTx linked to a decrease in naïve CD8+ and CM CD4+ T as well as CD56bright CD16- NK cells, returning to baseline levels at T24. More detailed analyses revealed increased CD69+ CD25- and diminished CD69- CD25- CD4+ or CD8+ T-cell proportions at T0 associated with decreasing S1PR1 expression. Passenger T and NK cells were found at low frequencies only in several patients at T0 and did not correlate with lymphocyte alterations. Collectively, these results suggest an immediate, transient shift toward memory T and NK cells following HTx. Opposite migratory properties of naïve versus memory T and NK cells occurring in the early phase after HTx could underlie these observations and may impinge on the development of allo-specific immune responses.


Assuntos
Linfócitos T CD8-Positivos , Transplante de Coração , Humanos , Células Matadoras Naturais , Subpopulações de Linfócitos , Imunofenotipagem , Antígeno CD56/metabolismo
5.
Cytokine ; 149: 155744, 2022 01.
Artigo em Inglês | MEDLINE | ID: mdl-34649160

RESUMO

BACKGROUND: Ischemia/reperfusion injury (IRI) is associated with inflammatory responses contributing to the development of primary graft dysfunction (PGD) and rejection. Here, we investigated the pathophysiology of IRI and the early phase after heart transplantation (HTx) regarding its cytokine/chemokine and endothelial networks. METHODS: Using multiplex technology, we assessed protein concentrations in plasma samples of HTx recipients (n = 11) pre-, postoperatively, 24 h and 3 weeks after HTx. The same proteins were quantified in organ storage solutions at the end of heart storage (n = 10). Unsupervised cluster, principal component analysis (PCA), K-nearest neighbor (KNN) network classifier analysis, ANOVA and Spearman correlation analyses were performed to identify specific patterns for IRI and individual kinetics of important soluble factors in HTx. RESULTS: Unique patterns of soluble factors were identified in plasma of HTx patients. KNN analysis defined IL-10, IL-6, sIL-6Rα, IL-1RA, IL-16, sVEGFR-1, IGFBP-1, HGF and sHer-2 as strongest signals directly post-Tx declining 24 hrs after HTx. By contrast, MIF, osteopontin (OPN), sVCAM-1 and sICAM-1, IGFBP-1, SCGF-ß, HGF were highly enriched in organ storage solutions, reflecting distinct ischemic (storage solution) vs. reperfusion (plasma) signatures. CONCLUSIONS: We identified specific inflammatory signatures for ischemic vs. reperfusion phases of HTx, associated with pro- as well as anti-inflammatory and endothelial biomarker candidates for IRI. These signatures might help to identify potential danger factors and their networks at both the ex situ (ischemic) as well as the reperfusion phase in the recipient after implantation.


Assuntos
Biomarcadores/metabolismo , Isquemia/metabolismo , Traumatismo por Reperfusão/metabolismo , Adolescente , Adulto , Quimiocinas/metabolismo , Criança , Citocinas/metabolismo , Feminino , Transplante de Coração/métodos , Humanos , Masculino , Pessoa de Meia-Idade , Reperfusão/métodos , Adulto Jovem
6.
Front Immunol ; 12: 778885, 2021.
Artigo em Inglês | MEDLINE | ID: mdl-34966390

RESUMO

Introduction: For end-stage lung diseases, double lung transplantation (DLTx) is the ultimate curative treatment option. However, acute and chronic rejection and chronic dysfunction are major limitations in thoracic transplantation medicine. Thus, a better understanding of the contribution of immune responses early after DLTx is urgently needed. Passenger cells, derived from donor lungs and migrating into the recipient periphery, are comprised primarily by NK and T cells. Here, we aimed at characterizing the expression of killer cell immunoglobulin-like receptors (KIR) on donor and recipient NK and T cells in recipient blood after DLTx. Furthermore, we investigated the functional status and capacity of donor vs. recipient NK cells. Methods: Peripheral blood samples of 51 DLTx recipients were analyzed pre Tx and at T0, T24 and 3wk post Tx for the presence of HLA-mismatched donor NK and T cells, their KIR repertoire as well as activation status using flow cytometry. Results: Within the first 3 weeks after DLTx, donor NK and T cells were detected in all patients with a peak at T0. An increase of the KIR2DL/S1-positive subset was found within the donor NK cell repertoire. Moreover, donor NK cells showed significantly higher frequencies of KIR2DL/S1-positive cells (p<0.01) 3wk post DLTx compared to recipient NK cells. This effect was also observed in donor KIR+ T cells 3wk after DLTx with higher proportions of KIR2DL/S1 (p<0.05) and KIR3DL/S1 (p<0.01) positive T cells. Higher activation levels of donor NK and T cells (p<0.001) were detected compared to recipient cells via CD25 expression as well as a higher degranulation capacity upon activation by K562 target cells. Conclusion: Higher frequencies of donor NK and T cells expressing KIR compared to recipient NK and T cells argue for their origin in the lung as a part of a highly specialized immunocompetent compartment. Despite KIR expression, higher activation levels of donor NK and T cells in the periphery of recipients suggest their pre-activation during the ex situ phase. Taken together, donor NK and T cells are likely to have a regulatory effect in the balance between tolerance and rejection and, hence, graft survival after DLTx.


Assuntos
Células Matadoras Naturais/imunologia , Transplante de Pulmão , Pulmão/imunologia , Receptores KIR/sangue , Linfócitos T/imunologia , Adulto , Degranulação Celular , Técnicas de Cocultura , Citotoxicidade Imunológica , Feminino , Citometria de Fluxo , Humanos , Imunofenotipagem , Subunidade alfa de Receptor de Interleucina-2/sangue , Células K562 , Células Matadoras Naturais/metabolismo , Pulmão/metabolismo , Transplante de Pulmão/efeitos adversos , Masculino , Pessoa de Meia-Idade , Fenótipo , Receptores KIR2DL3/sangue , Receptores KIR3DL1/sangue , Linfócitos T/metabolismo , Fatores de Tempo , Resultado do Tratamento
7.
Signal Transduct Target Ther ; 6(1): 418, 2021 12 10.
Artigo em Inglês | MEDLINE | ID: mdl-34893580

RESUMO

The systemic processes involved in the manifestation of life-threatening COVID-19 and in disease recovery are still incompletely understood, despite investigations focusing on the dysregulation of immune responses after SARS-CoV-2 infection. To define hallmarks of severe COVID-19 in acute disease (n = 58) and in disease recovery in convalescent patients (n = 28) from Hannover Medical School, we used flow cytometry and proteomics data with unsupervised clustering analyses. In our observational study, we combined analyses of immune cells and cytokine/chemokine networks with endothelial activation and injury. ICU patients displayed an altered immune signature with prolonged lymphopenia but the expansion of granulocytes and plasmablasts along with activated and terminally differentiated T and NK cells and high levels of SARS-CoV-2-specific antibodies. The core signature of seven plasma proteins revealed a highly inflammatory microenvironment in addition to endothelial injury in severe COVID-19. Changes within this signature were associated with either disease progression or recovery. In summary, our data suggest that besides a strong inflammatory response, severe COVID-19 is driven by endothelial activation and barrier disruption, whereby recovery depends on the regeneration of the endothelial integrity.


Assuntos
Anticorpos Antivirais/sangue , Proteínas Sanguíneas/metabolismo , COVID-19/diagnóstico , Síndrome da Liberação de Citocina/diagnóstico , Endotélio Vascular/virologia , Linfopenia/diagnóstico , SARS-CoV-2/patogenicidade , Biomarcadores/sangue , Proteína C-Reativa/metabolismo , COVID-19/imunologia , COVID-19/mortalidade , COVID-19/virologia , Quimiocina CXCL10/sangue , Quimiocina CXCL9/sangue , Análise por Conglomerados , Convalescença , Síndrome da Liberação de Citocina/imunologia , Síndrome da Liberação de Citocina/mortalidade , Síndrome da Liberação de Citocina/virologia , Progressão da Doença , Endotélio Vascular/imunologia , Granulócitos/imunologia , Granulócitos/virologia , Fatores de Crescimento de Células Hematopoéticas/sangue , Fator de Crescimento de Hepatócito/sangue , Humanos , Unidades de Terapia Intensiva , Subunidade p40 da Interleucina-12/sangue , Interleucina-6/sangue , Interleucina-8/sangue , Células Matadoras Naturais/imunologia , Células Matadoras Naturais/virologia , Lectinas Tipo C/sangue , Linfopenia/imunologia , Linfopenia/mortalidade , Linfopenia/virologia , Plasmócitos/imunologia , Plasmócitos/virologia , Análise de Sobrevida , Linfócitos T/imunologia , Linfócitos T/virologia
8.
Am J Transplant ; 19(10): 2692-2704, 2019 10.
Artigo em Inglês | MEDLINE | ID: mdl-31062482

RESUMO

The role of endothelial cells in the pathophysiology of antibody-mediated rejection after renal transplantation has been widely investigated. We expand this scenario to the impact of epithelial cells on the microenvironment during rejection. Primary proximal tubular epithelial cells were stimulated via HLA class I, CD155 and CD166 based on their potential signal-transducing capacity to mediate back signaling after encounter with either T/NK cells or donor-specific antibodies. Upon crosslinking of these ligands with mAbs, PTEC secreted IL-6, CXCL1,8,10, CCL2, and sICAM-1. These proteins were also released by PTEC as consequence of a direct interaction with T/NK cells. Downmodulation of the receptor CD226 on effector cells confirmed the involvement of this receptor/ligand pair in back signaling. In vivo, CD155 and CD166 expression was detectable in proximal and distal tubuli of renal transplant biopsies, respectively. The composition of the protein microenvironment in these biopsies showed a substantial overlap with the PTEC response. Cluster and principal component analyses of the microenvironment separated unsuspicious from rejection biopsies and, furthermore, ABMR, TCMR, and borderline rejection. In conclusion, our results provide evidence that epithelial cells may contribute to the rejection process and pave the way to a better understanding of the pathomechanisms of kidney allograft rejection.


Assuntos
Células Endoteliais/imunologia , Rejeição de Enxerto/etiologia , Antígenos de Histocompatibilidade Classe I/imunologia , Isoanticorpos/efeitos adversos , Transplante de Rim/efeitos adversos , Células T Matadoras Naturais/imunologia , Receptores de Células Matadoras Naturais/imunologia , Adolescente , Adulto , Idoso , Feminino , Seguimentos , Taxa de Filtração Glomerular , Rejeição de Enxerto/patologia , Sobrevivência de Enxerto , Antígenos de Histocompatibilidade Classe I/metabolismo , Humanos , Falência Renal Crônica/imunologia , Falência Renal Crônica/patologia , Falência Renal Crônica/cirurgia , Testes de Função Renal , Ligantes , Masculino , Pessoa de Meia-Idade , Prognóstico , Receptores de Células Matadoras Naturais/metabolismo , Fatores de Risco , Doadores de Tecidos , Transplante Homólogo , Adulto Jovem
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA