Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 12 de 12
Filtrar
Mais filtros








Base de dados
Intervalo de ano de publicação
1.
Front Endocrinol (Lausanne) ; 15: 1338458, 2024.
Artigo em Inglês | MEDLINE | ID: mdl-38469142

RESUMO

Introduction: The development of cognitive dysfunction is not necessarily associated with diet-induced obesity. We hypothesized that cognitive dysfunction might require additional vascular damage, for example, in atherosclerotic mice. Methods: We induced atherosclerosis in male C57BL/6N mice by injecting AAV-PCSK9DY (2x1011 VG) and feeding them a cholesterol-rich Western diet. After 3 months, mice were examined for cognition using Barnes maze procedure and for cerebral blood flow. Cerebral vascular morphology was examined by immunehistology. Results: In AAV-PCSK9DY-treated mice, plaque burden, plasma cholesterol, and triglycerides are elevated. RNAseq analyses followed by KEGG annotation show increased expression of genes linked to inflammatory processes in the aortas of these mice. In AAV-PCSK9DY-treated mice learning was delayed and long-term memory impaired. Blood flow was reduced in the cingulate cortex (-17%), caudate putamen (-15%), and hippocampus (-10%). Immunohistological studies also show an increased incidence of string vessels and pericytes (CD31/Col IV staining) in the hippocampus accompanied by patchy blood-brain barrier leaks (IgG staining) and increased macrophage infiltrations (CD68 staining). Discussion: We conclude that the hyperlipidemic PCSK9DY mouse model can serve as an appropriate approach to induce microvascular dysfunction that leads to reduced blood flow in the hippocampus, which could explain the cognitive dysfunction in these mice.


Assuntos
Aterosclerose , Hiperlipidemias , Masculino , Camundongos , Animais , Pró-Proteína Convertase 9/genética , Incidência , Camundongos Endogâmicos C57BL , Hiperlipidemias/patologia , Aterosclerose/metabolismo , Colesterol , Circulação Cerebrovascular/fisiologia
2.
Gastroenterology ; 164(2): 214-227, 2023 02.
Artigo em Inglês | MEDLINE | ID: mdl-36402192

RESUMO

BACKGROUND & AIMS: Epigenetic processes regulating gene expression contribute markedly to epithelial cell plasticity in colorectal carcinogenesis. The lysine methyltransferase SUV420H2 comprises an important regulator of epithelial plasticity and is primarily responsible for trimethylation of H4K20 (H4K20me3). Loss of H4K20me3 has been suggested as a hallmark of human cancer due to its interaction with DNMT1. However, the role of Suv4-20h2 in colorectal cancer is unknown. METHODS: We examined the alterations in histone modifications in patient-derived colorectal cancer organoids. Patient-derived colorectal cancer organoids and mouse intestinal organoids were genetically manipulated for functional studies in patient-derived xenograft and orthotopic transplantation. Gene expression profiling, micrococcal nuclease assay, and chromatin immunoprecipitation were performed to understand epigenetic regulation of chromatin states and gene expression in patient-derived and mouse intestinal organoids. RESULTS: We found that reduced H4K20me3 levels occurred predominantly in right-sided patient-derived colorectal cancer organoids, which were associated with increased chromatin accessibility. Re-compaction of chromatin by methylstat, a histone demethylase inhibitor, resulted in reduced growth selectively in subcutaneously grown tumors derived from right-sided cancers. Using mouse intestinal organoids, we confirmed that Suv4-20h2-mediated H4K20me3 is required for maintaining heterochromatin compaction and to prevent R-loop formation. Cross-species comparison of Suv4-20h2-depleted murine organoids with right-sided colorectal cancer organoids revealed a large overlap of gene signatures involved in chromatin silencing, DNA methylation, and stemness/Wnt signaling. CONCLUSIONS: Loss of Suv4-20h2-mediated H4K20me3 drives right-sided colorectal tumorigenesis through an epigenetically controlled mechanism of chromatin compaction. Our findings unravel a conceptually novel approach for subtype-specific therapy of this aggressive form of colorectal cancer.


Assuntos
Neoplasias do Colo , Histona-Lisina N-Metiltransferase , Animais , Humanos , Camundongos , Transformação Celular Neoplásica/genética , Cromatina/genética , Neoplasias do Colo/genética , Neoplasias Colorretais/genética , Epigênese Genética , Histonas/metabolismo , Xenoenxertos , Histona-Lisina N-Metiltransferase/metabolismo
3.
Nat Commun ; 13(1): 6907, 2022 11 14.
Artigo em Inglês | MEDLINE | ID: mdl-36376321

RESUMO

Transcription replication collisions (TRCs) constitute a major intrinsic source of genome instability but conclusive evidence for a causal role of TRCs in tumor initiation is missing. We discover that lack of the H4K20-dimethyltransferase KMT5B (also known as SUV4-20H1) in muscle stem cells de-represses S-phase transcription by increasing H4K20me1 levels, which induces TRCs and aberrant R-loops in oncogenic genes. The resulting replication stress and aberrant mitosis activate ATR-RPA32-P53 signaling, promoting cellular senescence, which turns into rapid rhabdomyosarcoma formation when p53 is absent. Inhibition of S-phase transcription ameliorates TRCs and formation of R-loops in Kmt5b-deficient MuSCs, validating the crucial role of H4K20me1-dependent, tightly controlled S-phase transcription for preventing collision errors. Low KMT5B expression is prevalent in human sarcomas and associated with tumor recurrence, suggesting a common function of KMT5B in sarcoma formation. The study uncovers decisive functions of KMT5B for maintaining genome stability by repressing S-phase transcription via control of H4K20me1 levels.


Assuntos
Células-Tronco Adultas , Histona-Lisina N-Metiltransferase , Humanos , Histona-Lisina N-Metiltransferase/genética , Histona-Lisina N-Metiltransferase/metabolismo , Proteína Supressora de Tumor p53/genética , Proteína Supressora de Tumor p53/metabolismo , Recidiva Local de Neoplasia , Fase S/genética , Instabilidade Genômica , Transformação Celular Neoplásica/genética , Células-Tronco Adultas/metabolismo , Replicação do DNA/genética
4.
Nat Commun ; 13(1): 4184, 2022 07 20.
Artigo em Inglês | MEDLINE | ID: mdl-35859073

RESUMO

The NAD+-dependent SIRT1-7 family of protein deacetylases plays a vital role in various molecular pathways related to stress response, DNA repair, aging and metabolism. Increased activity of individual sirtuins often exerts beneficial effects in pathophysiological conditions whereas reduced activity is usually associated with disease conditions. Here, we demonstrate that SIRT6 deacetylates H3K56ac in myofibers to suppress expression of utrophin, a dystrophin-related protein stabilizing the sarcolemma in absence of dystrophin. Inactivation of Sirt6 in dystrophin-deficient mdx mice reduced damage of myofibers, ameliorated dystrophic muscle pathology, and improved muscle function, leading to attenuated activation of muscle stem cells (MuSCs). ChIP-seq and locus-specific recruitment of SIRT6 using a CRISPR-dCas9/gRNA approach revealed that SIRT6 is critical for removal of H3K56ac at the Downstream utrophin Enhancer (DUE), which is indispensable for utrophin expression. We conclude that epigenetic manipulation of utrophin expression is a promising approach for the treatment of Duchenne Muscular Dystrophy (DMD).


Assuntos
Distrofia Muscular de Duchenne , Sirtuínas , Animais , Distrofina/metabolismo , Camundongos , Camundongos Endogâmicos mdx , Distrofia Muscular de Duchenne/metabolismo , Sirtuínas/genética , Utrofina/genética , Utrofina/metabolismo
5.
Cell Rep ; 31(7): 107652, 2020 05 19.
Artigo em Inglês | MEDLINE | ID: mdl-32433961

RESUMO

Somatic stem cells expand massively during tissue regeneration, which might require control of cell fitness, allowing elimination of non-competitive, potentially harmful cells. How or if such cells are removed to restore organ function is not fully understood. Here, we show that a substantial fraction of muscle stem cells (MuSCs) undergo necroptosis because of epigenetic rewiring during chronic skeletal muscle regeneration, which is required for efficient regeneration of dystrophic muscles. Inhibition of necroptosis strongly enhances suppression of MuSC expansion in a non-cell-autonomous manner. Prevention of necroptosis in MuSCs of healthy muscles is mediated by the chromatin remodeler CHD4, which directly represses the necroptotic effector Ripk3, while CHD4-dependent Ripk3 repression is dramatically attenuated in dystrophic muscles. Loss of Ripk3 repression by inactivation of Chd4 causes massive necroptosis of MuSCs, abolishing regeneration. Our study demonstrates how programmed cell death in MuSCs is tightly controlled to achieve optimal tissue regeneration.


Assuntos
Epigênese Genética/genética , Músculo Esquelético/metabolismo , Necroptose/genética , Humanos
6.
J Clin Invest ; 129(7): 2775-2791, 2019 06 17.
Artigo em Inglês | MEDLINE | ID: mdl-31205027

RESUMO

Hypertension is a primary risk factor for cardiovascular diseases including myocardial infarction and stroke. Major determinants of blood pressure are vasodilatory factors such as nitric oxide (NO) released from the endothelium under the influence of fluid shear stress exerted by the flowing blood. Several endothelial signaling processes mediating fluid shear stress-induced formation and release of vasodilatory factors have been described. It is, however, still poorly understood how fluid shear stress induces these endothelial responses. Here we show that the endothelial mechanosensitive cation channel PIEZO1 mediated fluid shear stress-induced release of adrenomedullin, which in turn activated its Gs-coupled receptor. The subsequent increase in cAMP levels promoted the phosphorylation of endothelial NO synthase (eNOS) at serine 633 through protein kinase A (PKA), leading to the activation of the enzyme. This Gs/PKA-mediated pathway synergized with the AKT-mediated pathways leading to eNOS phosphorylation at serine 1177. Mice with endothelium-specific deficiency of adrenomedullin, the adrenomedullin receptor, or Gαs showed reduced flow-induced eNOS activation and vasodilation and developed hypertension. Our data identify fluid shear stress-induced PIEZO1 activation as a central regulator of endothelial adrenomedullin release and establish the adrenomedullin receptor and subsequent Gs-mediated formation of cAMP as a critical endothelial mechanosignaling pathway regulating basal endothelial NO formation, vascular tone, and blood pressure.


Assuntos
Adrenomedulina/metabolismo , Pressão Sanguínea , Endotélio Vascular , Sistemas do Segundo Mensageiro , Estresse Mecânico , Animais , AMP Cíclico/metabolismo , Endotélio Vascular/metabolismo , Endotélio Vascular/patologia , Endotélio Vascular/fisiopatologia , Células Endoteliais da Veia Umbilical Humana , Humanos , Hipertensão/metabolismo , Hipertensão/patologia , Hipertensão/fisiopatologia , Canais Iônicos/metabolismo , Masculino , Camundongos , Camundongos Knockout , Óxido Nítrico/metabolismo , Óxido Nítrico Sintase Tipo III/metabolismo
7.
BMC Microbiol ; 19(1): 75, 2019 04 08.
Artigo em Inglês | MEDLINE | ID: mdl-30961537

RESUMO

BACKGROUND: The potential of next-generation sequencing (NGS) for hypothesis-free pathogen diagnosis from (poly-)microbially contaminated, formalin-fixed, paraffin embedded tissue samples from patients with invasive fungal infections and amebiasis was investigated. Samples from patients with chromoblastomycosis (n = 3), coccidioidomycosis (n = 2), histoplasmosis (n = 4), histoplasmosis or cryptococcosis with poor histological discriminability (n = 1), mucormycosis (n = 2), mycetoma (n = 3), rhinosporidiosis (n = 2), and invasive Entamoeba histolytica infections (n = 6) were analyzed by NGS (each one Illumina v3 run per sample). To discriminate contamination from putative infections in NGS analysis, mean and standard deviation of the number of specific sequence fragments (paired reads) were determined and compared in all samples examined for the pathogens in question. RESULTS: For matches between NGS results and histological diagnoses, a percentage of species-specific reads greater than the 4th standard deviation above the mean value of all 23 assessed sample materials was required. Potentially etiologically relevant pathogens could be identified by NGS in 5 out of 17 samples of patients with invasive mycoses and in 1 out of 6 samples of patients with amebiasis. CONCLUSIONS: The use of NGS for hypothesis-free pathogen diagnosis from contamination-prone formalin-fixed, paraffin-embedded tissue requires further standardization.


Assuntos
Amebíase/diagnóstico , Coinfecção/microbiologia , Sequenciamento de Nucleotídeos em Larga Escala , Infecções Fúngicas Invasivas/diagnóstico , Coinfecção/diagnóstico , Entamoeba histolytica/genética , Entamoeba histolytica/patogenicidade , Formaldeído , Fungos/genética , Fungos/patogenicidade , Genômica , Humanos , Infecções Fúngicas Invasivas/microbiologia , Inclusão em Parafina , Estudo de Prova de Conceito , Análise de Sequência de DNA , Fixação de Tecidos
8.
Cell Stem Cell ; 23(6): 794-805.e4, 2018 12 06.
Artigo em Inglês | MEDLINE | ID: mdl-30449715

RESUMO

The identity of tumor-initiating cells in many cancer types is unknown. Tumors often express genes associated with embryonic development, although the contributions of zygotic programs to tumor initiation and formation are poorly understood. Here, we show that regeneration-induced loss of quiescence in p53-deficient muscle stem cells (MuSCs) results in rhabdomyosarcoma formation with 100% penetrance. Genomic analyses of purified tumor cells revealed spontaneous and discrete oncogenic amplifications in MuSCs that drive tumorigenesis, including, but not limited to, the amplification of the cleavage-stage Dux transcription factor (TF) Duxbl. We further found that Dux factors drive an early embryonic gene signature that defines a molecular subtype across a broad range of human cancers. Duxbl initiates tumorigenesis by enforcing a mesenchymal-to-epithelial transition, and targeted inactivation of Duxbl specifically in Duxbl-expressing tumor cells abolishes their expansion. These findings reveal how regeneration and genomic instability can interact to activate zygotic genes that drive tumor initiation and growth.


Assuntos
Autorrenovação Celular , Proteínas de Homeodomínio/genética , Proteínas de Homeodomínio/metabolismo , Músculo Esquelético/metabolismo , Mioblastos/metabolismo , Neoplasias/genética , Fatores de Transcrição/genética , Fatores de Transcrição/metabolismo , Proteína Supressora de Tumor p53/deficiência , Zigoto/metabolismo , Animais , Células Cultivadas , Instabilidade Genômica , Humanos , Camundongos , Camundongos Endogâmicos C57BL , Camundongos Nus , Músculo Esquelético/patologia , Mioblastos/patologia , Neoplasias/metabolismo , Neoplasias/patologia , Proteína Supressora de Tumor p53/genética
9.
Circulation ; 136(1): 65-79, 2017 Jul 04.
Artigo em Inglês | MEDLINE | ID: mdl-28351900

RESUMO

BACKGROUND: The angiogenic function of endothelial cells is regulated by numerous mechanisms, but the impact of long noncoding RNAs (lncRNAs) has hardly been studied. We set out to identify novel and functionally important endothelial lncRNAs. METHODS: Epigenetically controlled lncRNAs in human umbilical vein endothelial cells were searched by exon-array analysis after knockdown of the histone demethylase JARID1B. Molecular mechanisms were investigated by RNA pulldown and immunoprecipitation, mass spectrometry, microarray, several knockdown approaches, CRISPR-Cas9, assay for transposase-accessible chromatin sequencing, and chromatin immunoprecipitation in human umbilical vein endothelial cells. Patient samples from lung and tumors were studied for MANTIS expression. RESULTS: A search for epigenetically controlled endothelial lncRNAs yielded lncRNA n342419, here termed MANTIS, as the most strongly regulated lncRNA. Controlled by the histone demethylase JARID1B, MANTIS was downregulated in patients with idiopathic pulmonary arterial hypertension and in rats treated with monocrotaline, whereas it was upregulated in carotid arteries of Macaca fascicularis subjected to atherosclerosis regression diet, and in endothelial cells isolated from human glioblastoma patients. CRISPR/Cas9-mediated deletion or silencing of MANTIS with small interfering RNAs or GapmeRs inhibited angiogenic sprouting and alignment of endothelial cells in response to shear stress. Mechanistically, the nuclear-localized MANTIS lncRNA interacted with BRG1, the catalytic subunit of the switch/sucrose nonfermentable chromatin-remodeling complex. This interaction was required for nucleosome remodeling by keeping the ATPase function of BRG1 active. Thereby, the transcription of key endothelial genes such as SOX18, SMAD6, and COUP-TFII was regulated by ensuring efficient RNA polymerase II machinery binding. CONCLUSION: MANTIS is a differentially regulated novel lncRNA facilitating endothelial angiogenic function.


Assuntos
Sistemas CRISPR-Cas/fisiologia , Epigênese Genética/fisiologia , Células Endoteliais da Veia Umbilical Humana/fisiologia , Microvasos/fisiologia , Neovascularização Fisiológica/fisiologia , RNA Longo não Codificante/biossíntese , Animais , Linhagem Celular , Humanos , Hipertensão Pulmonar/genética , Hipertensão Pulmonar/metabolismo , Histona Desmetilases com o Domínio Jumonji/biossíntese , Histona Desmetilases com o Domínio Jumonji/genética , Macaca fascicularis , Masculino , Camundongos , Camundongos SCID , Proteínas Nucleares/biossíntese , Proteínas Nucleares/genética , RNA Longo não Codificante/genética , Ratos , Ratos Sprague-Dawley , Proteínas Repressoras/biossíntese , Proteínas Repressoras/genética
10.
Nat Commun ; 6: 7140, 2015 Jun 01.
Artigo em Inglês | MEDLINE | ID: mdl-26028225

RESUMO

Skeletal muscle stem cells (MuSC), also called satellite cells, are indispensable for maintenance and regeneration of adult skeletal muscles. Yet, a comprehensive picture of the regulatory events controlling the fate of MuSC is missing. Here, we determine the proteome of MuSC to design a loss-of-function screen, and identify 120 genes important for MuSC function including the arginine methyltransferase Prmt5. MuSC-specific inactivation of Prmt5 in adult mice prevents expansion of MuSC, abolishes long-term MuSC maintenance and abrogates skeletal muscle regeneration. Interestingly, Prmt5 is dispensable for proliferation and differentiation of Pax7(+) myogenic progenitor cells during mouse embryonic development, indicating significant differences between embryonic and adult myogenesis. Mechanistic studies reveal that Prmt5 controls proliferation of adult MuSC by direct epigenetic silencing of the cell cycle inhibitor p21. We reason that Prmt5 generates a poised state that keeps MuSC in a standby mode, thus allowing rapid MuSC amplification under disease conditions.


Assuntos
Diferenciação Celular/genética , Proliferação de Células/genética , Desenvolvimento Muscular/genética , Proteínas Metiltransferases/genética , Proteoma/metabolismo , Células Satélites de Músculo Esquelético/metabolismo , Células-Tronco/metabolismo , Animais , Western Blotting , Imunoprecipitação da Cromatina , Inibidor de Quinase Dependente de Ciclina p21/metabolismo , Epigênese Genética , Imunofluorescência , Inativação Gênica , Imageamento por Ressonância Magnética , Espectrometria de Massas , Camundongos , Camundongos Knockout , Músculo Esquelético/citologia , Músculo Esquelético/patologia , Fator de Transcrição PAX7/metabolismo , Proteína-Arginina N-Metiltransferases , Proteoma/genética , Reação em Cadeia da Polimerase em Tempo Real , Células Satélites de Músculo Esquelético/citologia , Células-Tronco/citologia
11.
BMC Genomics ; 16: 175, 2015 Mar 12.
Artigo em Inglês | MEDLINE | ID: mdl-25887115

RESUMO

BACKGROUND: Enterococcus faecalis is a multifaceted microorganism known to act as a beneficial intestinal commensal bacterium. It is also a dreaded nosocomial pathogen causing life-threatening infections in hospitalised patients. Isolates of a distinct MLST type ST40 represent the most frequent strain type of this species, distributed worldwide and originating from various sources (animal, human, environmental) and different conditions (colonisation/infection). Since enterococci are known to be highly recombinogenic we determined to analyse the microevolution and niche adaptation of this highly distributed clonal type. RESULTS: We compared a set of 42 ST40 isolates by assessing key molecular determinants, performing whole genome sequencing (WGS) and a number of phenotypic assays including resistance profiling, formation of biofilm and utilisation of carbon sources. We generated the first circular closed reference genome of an E. faecalis isolate D32 of animal origin and compared it with the genomes of other reference strains. D32 was used as a template for detailed WGS comparisons of high-quality draft genomes of 14 ST40 isolates. Genomic and phylogenetic analyses suggest a high level of similarity regarding the core genome, also demonstrated by similar carbon utilisation patterns. Distribution of known and putative virulence-associated genes did not differentiate between ST40 strains from a commensal and clinical background or an animal or human source. Further analyses of mobile genetic elements (MGE) revealed genomic diversity owed to: (1) a modularly structured pathogenicity island; (2) a site-specifically integrated and previously unknown genomic island of 138 kb in two strains putatively involved in exopolysaccharide synthesis; and (3) isolate-specific plasmid and phage patterns. Moreover, we used different cell-biological and animal experiments to compare the isolate D32 with a closely related ST40 endocarditis isolate whose draft genome sequence was also generated. D32 generally showed a greater capacity of adherence to human cell lines and an increased pathogenic potential in various animal models in combination with an even faster growth in vivo (not in vitro). CONCLUSION: Molecular, genomic and phenotypic analysis of representative isolates of a major clone of E. faecalis MLST ST40 revealed new insights into the microbiology of a commensal bacterium which can turn into a conditional pathogen.


Assuntos
Enterococcus faecalis/genética , Genoma Bacteriano , Animais , Bacteriemia/microbiologia , Aderência Bacteriana , Biofilmes/crescimento & desenvolvimento , Sistemas CRISPR-Cas , Células CACO-2 , Carbono/metabolismo , Enterococcus faecalis/classificação , Enterococcus faecalis/metabolismo , Enterococcus faecalis/patogenicidade , Feminino , Genômica , Infecções por Bactérias Gram-Positivas/microbiologia , Humanos , Sequências Repetitivas Dispersas , Lepidópteros/microbiologia , Camundongos Endogâmicos BALB C , Fenótipo , Plasmídeos/genética , Análise de Sequência de DNA
12.
J Bacteriol ; 194(2): 532-3, 2012 Jan.
Artigo em Inglês | MEDLINE | ID: mdl-22207742

RESUMO

The complete and annotated sequences of four plasmids from a historical enteroaggregative Shiga toxin-producing Escherichia coli (HUSEC) serotype O104:H4 strain, HUSEC41/01-09591, isolated in 2001 in Germany are reported.


Assuntos
Infecções por Escherichia coli/microbiologia , Escherichia coli/genética , Genoma Bacteriano , Síndrome Hemolítico-Urêmica/microbiologia , Escherichia coli/classificação , Humanos , Dados de Sequência Molecular , Plasmídeos/genética
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA