Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 86
Filtrar
1.
Int J Mol Sci ; 25(19)2024 Sep 26.
Artigo em Inglês | MEDLINE | ID: mdl-39408697

RESUMO

The immune system plays a critical role in inflammation by initiating responses to infections or tissue damage. The nuclear factor-κB (NF-κB) pathway plays a key role in inflammation and innate immunity, as well as other cellular activities. Dysregulation of this well-choreographed pathway has been implicated in various diseases, including cancer. CARD11 is a key molecule in the BCL10-MALT1 complex, which is involved in transducing the signal downstream of the NF-κB pathway. This study aims to elucidate how CARD11 overexpression exacerbates the prognosis of colorectal cancer (CRC). To identify the cellular pathways influenced by CARD11, transcriptomic analysis in both CRC cell lines and patients was carried out on CARD11- overexpressed HCT-116 and HT-29 CRC cell lines alongside empty vector-transfected cell lines. Furthermore, a comparison of transcriptomic data from adenoma and carcinoma CRC patients with low- (CARD11-) and high-(CARD11+) CARD11 expression was carried out. Whole transcriptomics and bioinformatics analysis results indicate that CARD11 appears to play a key role in CRC progression. Absolute GSEA (absGSEA) on HCT-116 transcriptomics data revealed that CARD11 overexpression promotes cell growth and tissue remodeling and enhances immune response. Key genes co-expressed with CARD11, such as EP300, KDM5A, HIF1A, NFKBIZ, and DUSP1, were identified as mediators of these processes. In the HT-29 cell line, CARD11 overexpression activated pathways involved in chemotaxis and extracellular matrix (ECM) organization, marked by IL1RN, MDK, SPP1, and chemokines like CXCL1, CXCL3, and CCL22, which were shown to contribute to the more invasive stage of CRC. In patient samples, adenoma patients exhibited increased expression of genes associated with the tumor immune microenvironment, such as IL6ST, collagen family members, and CRC transition markers, such as GLI3 and PIEZO2, in CARD11+ adenoma patients. Carcinoma patients showed a dramatic increase in the expression of MAPK8IP2 in CARD11+ carcinoma patients alongside other cancer-related genes, including EMB, EPHB6, and CPEB4.


Assuntos
Proteínas Adaptadoras de Sinalização CARD , Neoplasias Colorretais , Perfilação da Expressão Gênica , Regulação Neoplásica da Expressão Gênica , NF-kappa B , Microambiente Tumoral , Humanos , Neoplasias Colorretais/genética , Neoplasias Colorretais/patologia , Neoplasias Colorretais/imunologia , Neoplasias Colorretais/metabolismo , Proteínas Adaptadoras de Sinalização CARD/genética , Proteínas Adaptadoras de Sinalização CARD/metabolismo , NF-kappa B/metabolismo , NF-kappa B/genética , Microambiente Tumoral/genética , Microambiente Tumoral/imunologia , Transdução de Sinais , Guanilato Ciclase/genética , Guanilato Ciclase/metabolismo , Células HT29 , Células HCT116 , Transcriptoma , Linhagem Celular Tumoral
2.
Front Oncol ; 14: 1445427, 2024.
Artigo em Inglês | MEDLINE | ID: mdl-39391235

RESUMO

Tenosynovial giant cell tumor (TGCT) is a rare type of tumor that originates from the synovium of joints and tendon sheaths. It is characterized by recurring genetic abnormalities, often involving the CSF1 gene. Common symptoms include pain and swelling, which are not specific to TGCT, so MRI and a pathological biopsy are needed for an accurate diagnosis. We report the case of a 45-year-old man who experienced painful swelling in his right hip for six months. Initially, this was diagnosed as Erdheim-Chester disease. However, whole exome sequencing (WES) and RNA-Sequencing revealed a CSF1::GAPDHP64 fusion, leading to a revised diagnosis of TGCT. The patient was treated with pegylated interferon and imatinib, which resulted in stable disease after three months. Single-cell transcriptome analysis identified seven distinct cell clusters, revealing that neoplastic cells expressing CSF1 attract macrophages. Analysis of ligand-receptor interactions showed significant communication between neoplastic cells and macrophages mediated by CSF1 and CSF1R. Our findings emphasize the importance of comprehensive molecular analysis in diagnosing and treating rare malignancies like TGCT.

3.
Oncologist ; 2024 Jul 03.
Artigo em Inglês | MEDLINE | ID: mdl-38960389

RESUMO

We report a case of a long-term surviving patient with EML4/ALK translocated non-small cell adenocarcinoma of the lung in UICC8 stage IVA. During recurrence under continuous crizotinib therapy, a hitherto insufficiently characterized missense mutation in the ALK gene (Arg1181His) was identified through targeted sequencing. The aforementioned EML4/ALK translocation could still be detected in this situation. Employing a 3D reconstruction of the ALK tertiary structure, considering its interaction with various ALK inhibitors at the molecular binding site, our analysis indicated the presence of a mutation associated with crizotinib resistance. To validate the biological relevance of this previously unknown mutation, we carried out an in vitro validation approach in cell culture in addition to the molecular diagnostics accompanied by the molecular tumor board. The tumor scenario was mimicked through retroviral transfection. Our comparative in vitro treatment regimen paired with the clinical trajectory of the patient, corroborated our initial clinical and biochemical suspicions. Our approach demonstrates preclinical, in silico, and clinical evidence of a novel crizotinib resistance mutation in ALK as well as sensitivity toward brigatinib and potentially lorlatinib. In future cases, this procedure represents an important contribution to functional diagnostics in the context of molecular tumor boards.

5.
J Invest Dermatol ; 2024 Apr 29.
Artigo em Inglês | MEDLINE | ID: mdl-38692406

RESUMO

Intravenous Ig (IVIg) is used to treat mucous membrane pemphigoid, although its therapeutic effectivity is not sufficiently supported by randomized controlled clinical trials, and its mode of action is only insufficiently understood. We have examined the effect of IVIg in a mouse model of anti-laminin 332 mucous membrane pemphigoid and found that IVIg ameliorates both cutaneous and mucosal inflammatory lesions. Our investigation into the modes of action of IVIg in mucous membrane pemphigoid indicated effective anti-inflammatory mechanisms beyond the enhanced degradation of IgG mediated through inhibition of the FcRn. Our results suggest that IVIg curbs the activation of neutrophils at several levels. This includes a direct, immediate inhibitory effect on neutrophil activation by immune complexes but not C5a, which blunts the release of ROS and leukotriene B4 from neutrophils. IVIg also suppresses the formation of neutrophil extracellular traps in response to calcium ion ionophore. In vivo treatment with IVIg altered the transcriptome of blood leukocytes and bone marrow neutrophils toward less proinflammatory phenotypes. Collectively, our results support the effectivity of IVIg in the treatment of mucous membrane pemphigoid and indicate that effects on neutrophils at multiple levels may significantly contribute to its therapeutic effects.

6.
Leukemia ; 38(5): 1086-1098, 2024 May.
Artigo em Inglês | MEDLINE | ID: mdl-38600314

RESUMO

Blastic plasmacytoid dendritic cell neoplasm (BPDCN) constitutes a rare and aggressive malignancy originating from plasmacytoid dendritic cells (pDCs) with a primarily cutaneous tropism followed by dissemination to the bone marrow and other organs. We conducted a genome-wide analysis of the tumor methylome in an extended cohort of 45 BPDCN patients supplemented by WES and RNA-seq as well as ATAC-seq on selected cases. We determined the BPDCN DNA methylation profile and observed a dramatic loss of DNA methylation during malignant transformation from early and mature DCs towards BPDCN. DNA methylation profiles further differentiate between BPDCN, AML, CMML, and T-ALL exhibiting the most striking global demethylation, mitotic stress, and merely localized DNA hypermethylation in BPDCN resulting in pronounced inactivation of tumor suppressor genes by comparison. DNA methylation-based analysis of the tumor microenvironment by MethylCIBERSORT yielded two, prognostically relevant clusters (IC1 and IC2) with specific cellular composition and mutational spectra. Further, the transcriptional subgroups of BPDCN (C1 and C2) differ by DNA methylation signatures in interleukin/inflammatory signaling genes but also by higher transcription factor activity of JAK-STAT and NFkB signaling in C2 in contrast to an EZH2 dependence in C1-BPDCN. Our integrative characterization of BPDCN offers novel molecular insights and potential diagnostic applications.


Assuntos
Metilação de DNA , Células Dendríticas , Humanos , Células Dendríticas/patologia , Células Dendríticas/metabolismo , Feminino , Masculino , Pessoa de Meia-Idade , Neoplasias Hematológicas/genética , Neoplasias Hematológicas/patologia , Microambiente Tumoral/genética , Idoso , Adulto , Prognóstico , Regulação Neoplásica da Expressão Gênica , Mutação , Biomarcadores Tumorais/genética
7.
Cancers (Basel) ; 16(4)2024 Feb 06.
Artigo em Inglês | MEDLINE | ID: mdl-38398077

RESUMO

Pancreatic ductal adenocarcinoma (PDAC) is mostly diagnosed at advanced or even metastasized stages, limiting the prognoses of patients. Metastasis requires high tumor cell plasticity, implying phenotypic switching in response to changing environments. Here, epithelial-mesenchymal transition (EMT), being associated with an increase in cancer stem cell (CSC) properties, and its reversion are important. Since it is poorly understood whether different CSC phenotypes exist along the EMT axis and how these impact malignancy-associated properties, we aimed to characterize CSC populations of epithelial and mesenchymal-like PDAC cells. Single-cell cloning revealed CSC (Holoclone) and non-CSC (Paraclone) clones from the PDAC cell lines Panc1 and Panc89. The Panc1 Holoclone cells showed a mesenchymal-like phenotype, dominated by a high expression of the stemness marker Nestin, while the Panc89 Holoclone cells exhibited a SOX2-dominated epithelial phenotype. The Panc89 Holoclone cells showed enhanced cell growth and a self-renewal capacity but slow cluster-like invasion. Contrarily, the Panc1 Holoclone cells showed slower cell growth and self-renewal ability but were highly invasive. Moreover, cell variants differentially responded to chemotherapy. In vivo, the Panc1 and Panc89 cell variants significantly differed regarding the number and size of metastases, as well as organ manifestation, leading to different survival outcomes. Overall, these data support the existence of different CSC phenotypes along the EMT axis in PDAC, manifesting different metastatic propensities.

8.
Ann Hematol ; 103(5): 1587-1599, 2024 May.
Artigo em Inglês | MEDLINE | ID: mdl-38194088

RESUMO

Blastic plasmacytoid dendritic cell neoplasm (BPDCN), a rare malignancy derived from plasmacytoid dendritic cells, can mimic both acute leukemia and aggressive T-cell lymphoma. Therapy of this highly aggressive hematological disease should be initiated as soon as possible, especially in light of novel targeted therapies that have become available. However, differential diagnosis of BPDCN remains challenging. This retrospective study aimed to highlight the challenges to timely diagnoses of BPDCN. We documented the diagnostic and clinical features of 43 BPDCN patients diagnosed at five academic hospitals from 2001-2022. The frequency of BPDCN diagnosis compared to AML was 1:197 cases. The median interval from the first documented clinical manifestation to diagnosis of BPDCN was 3 months. Skin (65%) followed by bone marrow (51%) and blood (45%) involvement represented the most common sites. Immunophenotyping revealed CD4 + , CD45 + , CD56 + , CD123 + , HLA-DR + , and TCL-1 + as the most common surface markers. Overall, 86% (e.g. CD33) and 83% (e.g., CD7) showed co-expression of myeloid and T-cell markers, respectively. In the median, we detected five genomic alterations per case including mutational subtypes typically involved in AML: DNA methylation (70%), signal transduction (46%), splicing factors (38%), chromatin modification (32%), transcription factors (32%), and RAS pathway (30%), respectively. The contribution of patients (30%) proceeding to any form of upfront stem cell transplantation (SCT; autologous or allogeneic) was almost equal resulting in beneficial overall survival rates in those undergoing allogeneic SCT (p = 0.0001). BPDCN is a rare and challenging entity sharing various typical characteristics of other hematological diseases. Comprehensive diagnostics should be initiated timely to ensure appropriate treatment strategies.


Assuntos
Neoplasias Hematológicas , Leucemia Mieloide Aguda , Transtornos Mieloproliferativos , Neoplasias Cutâneas , Humanos , Estudos Retrospectivos , Leucemia Mieloide Aguda/patologia , Medula Óssea/patologia , Antígenos HLA-DR , Transtornos Mieloproliferativos/patologia , Neoplasias Cutâneas/diagnóstico , Neoplasias Cutâneas/terapia , Neoplasias Cutâneas/metabolismo , Células Dendríticas/patologia , Neoplasias Hematológicas/diagnóstico , Neoplasias Hematológicas/terapia , Neoplasias Hematológicas/genética
9.
Sci Rep ; 13(1): 17943, 2023 10 20.
Artigo em Inglês | MEDLINE | ID: mdl-37863978

RESUMO

Type 2 Diabetes Mellitus has reached epidemic levels globally, and several studies have confirmed a link between gut microbial dysbiosis and aberrant glucose homeostasis among people with diabetes. While the assumption is that abnormal metabolomic signatures would often accompany microbial dysbiosis, the connection remains largely unknown. In this study, we investigated how diet changed the gut bacteriome, mycobiome and metabolome in people with and without type 2 Diabetes.1 Differential abundance testing determined that the metabolites Propionate, U8, and 2-Hydroxybutyrate were significantly lower, and 3-Hydroxyphenyl acetate was higher in the high fiber diet compared to low fiber diet in the healthy control group. Next, using multi-omics factor analysis (MOFA2), we attempted to uncover sources of variability that drive each of the different groups (bacterial, fungal, and metabolite) on all samples combined (control and DM II). Performing variance decomposition, ten latent factors were identified, and then each latent factor was tested for significant correlations with age, BMI, diet, and gender. Latent Factor1 was the most significantly correlated. Remarkably, the model revealed that the mycobiome explained most of the variance in the DM II group (12.5%) whereas bacteria explained most of the variance in the control group (64.2% vs. 10.4% in the DM II group). The latent Factor1 was significantly correlated with dietary intake (q < 0.01). Further analyses of the impact of bacterial and fungal genera on Factor1 determined that the nine bacterial genera (Phocaeicola, Ligilactobacillus, Mesosutterella, Acidaminococcus, Dorea A, CAG-317, Caecibacter, Prevotella and Gemmiger) and one fungal genus (Malassezia furfur) were found to have high factor weights (absolute weight > 0.6). Alternatively, a linear regression model was fitted per disease group for each genus to visualize the relationship between the factor values and feature abundances, showing Xylose with positive weights and Propionate, U8, and 2-Hydroxybutyrate with negative weights. This data provides new information on the microbially derived changes that influence metabolic phenotypes in response to different diets and disease conditions in humans.


Assuntos
Diabetes Mellitus Tipo 2 , Microbioma Gastrointestinal , Humanos , Diabetes Mellitus Tipo 2/metabolismo , Microbioma Gastrointestinal/genética , Disbiose/microbiologia , Propionatos , Multiômica , Metabolômica , Bactérias/genética , Ingestão de Alimentos , Hidroxibutiratos
10.
Microbiome ; 11(1): 232, 2023 10 21.
Artigo em Inglês | MEDLINE | ID: mdl-37864204

RESUMO

BACKGROUND: Like its human counterpart, canine atopic dermatitis (cAD) is a chronic relapsing condition; thus, most cAD-affected dogs will require lifelong treatment to maintain an acceptable quality of life. A potential intervention is modulation of the composition of gut microbiota, and in fact, probiotic treatment has been proposed and tried in human atopic dermatitis (AD) patients. Since dogs are currently receiving intensive medical care, this will be the same option for dogs, while evidence of gut dysbiosis in cAD is still missing, although skin microbial profiling in cAD has been conducted in several studies. Therefore, we conducted a comprehensive analysis of both gut and skin microbiota in cAD in one specific cAD-predisposed breed, Shiba Inu. Additionally, we evaluated the impact of commonly used medical management on cAD (Janus kinase; JAK inhibitor, oclacitinib) on the gut and skin microbiota. Furthermore, we genotyped the Shiba Inu dogs according to the mitochondrial DNA haplogroup and assessed its association with the composition of the gut microbiota. RESULTS: Staphylococcus was the most predominant bacterial genus observed in the skin; Escherichia/Shigella and Clostridium sensu stricto were highly abundant in the gut of cAD-affected dogs. In the gut microbiota, Fusobacteria and Megamonas were highly abundant in healthy dogs but significantly reduced in cAD-affected dogs. The abundance of these bacterial taxa was positively correlated with the effect of the treatment and state of the disease. Oclacitinib treatment on cAD-affected dogs shifted the composition of microbiota towards that in healthy dogs, and the latter brought it much closer to healthy microbiota, particularly in the gut. Additionally, even within the same dog breed, the mtDNA haplogroup varied, and there was an association between the mtDNA haplogroup and microbial composition in the gut and skin. CONCLUSIONS: Dysbiosis of both the skin and the gut was observed in cAD in Shiba Inu dogs. Our findings provide a basis for the potential treatment of cAD by manipulating the gut microbiota as well as the skin microbiota. Video Abstract.


Assuntos
Dermatite Atópica , Microbiota , Cães , Humanos , Animais , Dermatite Atópica/veterinária , Dermatite Atópica/microbiologia , Disbiose , Qualidade de Vida , Bactérias , DNA Mitocondrial
11.
Blood ; 142(25): 2175-2191, 2023 12 21.
Artigo em Inglês | MEDLINE | ID: mdl-37756525

RESUMO

ABSTRACT: Growth factor independence 1 (GFI1) is a DNA-binding transcription factor and a key regulator of hematopoiesis. GFI1-36N is a germ line variant, causing a change of serine (S) to asparagine (N) at position 36. We previously reported that the GFI1-36N allele has a prevalence of 10% to 15% among patients with acute myeloid leukemia (AML) and 5% to 7% among healthy Caucasians and promotes the development of this disease. Using a multiomics approach, we show here that GFI1-36N expression is associated with increased frequencies of chromosomal aberrations, mutational burden, and mutational signatures in both murine and human AML and impedes homologous recombination (HR)-directed DNA repair in leukemic cells. GFI1-36N exhibits impaired binding to N-Myc downstream-regulated gene 1 (Ndrg1) regulatory elements, causing decreased NDRG1 levels, which leads to a reduction of O6-methylguanine-DNA-methyltransferase (MGMT) expression levels, as illustrated by both transcriptome and proteome analyses. Targeting MGMT via temozolomide, a DNA alkylating drug, and HR via olaparib, a poly-ADP ribose polymerase 1 inhibitor, caused synthetic lethality in human and murine AML samples expressing GFI1-36N, whereas the effects were insignificant in nonmalignant GFI1-36S or GFI1-36N cells. In addition, mice that received transplantation with GFI1-36N leukemic cells treated with a combination of temozolomide and olaparib had significantly longer AML-free survival than mice that received transplantation with GFI1-36S leukemic cells. This suggests that reduced MGMT expression leaves GFI1-36N leukemic cells particularly vulnerable to DNA damage initiating chemotherapeutics. Our data provide critical insights into novel options to treat patients with AML carrying the GFI1-36N variant.


Assuntos
Proteínas de Ligação a DNA , Leucemia Mieloide Aguda , Humanos , Camundongos , Animais , Proteínas de Ligação a DNA/genética , Proteínas de Ligação a DNA/metabolismo , Temozolomida , Leucemia Mieloide Aguda/tratamento farmacológico , Leucemia Mieloide Aguda/genética , Dano ao DNA , Reparo do DNA , Células Germinativas/metabolismo , DNA , Fatores de Transcrição/genética
12.
Front Oncol ; 13: 1230382, 2023.
Artigo em Inglês | MEDLINE | ID: mdl-37719017

RESUMO

Purpose: Chemotherapy is pivotal in the multimodal treatment of pancreatic ductal adenocarcinoma (PDAC). Technical advances unveiled a high degree of inter- and intratumoral heterogeneity. We hypothesized that intratumoral heterogeneity (ITH) impacts response to gemcitabine treatment and demands specific targeting of resistant subclones. Methods: Using single cell-derived cell lines (SCDCLs) from the classical cell line BxPC3 and the basal-like cell line Panc-1, we addressed the effect of ITH on response to gemcitabine treatment. Results: Individual SCDCLs of both parental tumor cell populations showed considerable heterogeneity in response to gemcitabine. Unsupervised PCA including the 1,000 most variably expressed genes showed a clustering of the SCDCLs according to their respective sensitivity to gemcitabine treatment for BxPC3, while this was less clear for Panc-1. In BxPC3 SCDCLs, enriched signaling pathways EMT, TNF signaling via NfKB, and IL2STAT5 signaling correlated with more resistant behavior to gemcitabine. In Panc-1 SCDCLs MYC targets V1 and V2 as well as E2F targets were associated with stronger resistance. We used recursive feature elimination for Feature Selection in order to compute sets of proteins that showed strong association with the response to gemcitabine. The optimal protein set calculated for Panc-1 comprised fewer proteins in comparison to the protein set determined for BxPC3. Based on molecular profiles, we could show that the gemcitabine-resistant SCDCLs of both BxPC3 and Panc-1 are more sensitive to the BET inhibitor JQ1 compared to the respective gemcitabine-sensitive SCDCLs. Conclusion: Our model system of SCDCLs identified gemcitabine-resistant subclones and provides evidence for the critical role of ITH for treatment response in PDAC. We exploited molecular differences as the basis for differential response and used these for more targeted therapy of resistant subclones.

14.
Front Immunol ; 14: 1189251, 2023.
Artigo em Inglês | MEDLINE | ID: mdl-37575223

RESUMO

Introduction: Primarily driven by autoreactive B cells, pemphigus foliaceus (PF) is an uncommon autoimmune blistering skin disease of sporadic occurrence worldwide. However, PF reaches a prevalence of 3% in the endemic areas of Brazil, the highest ever registered for any autoimmune disease, which indicates environmental factors influencing the immune response in susceptible individuals. We aimed to provide insights into the immune repertoire of patients with PF living in the endemic region of the disease, compared to healthy individuals from the endemic region and a non-endemic area. Methods: We characterized the B-cell repertoire in i) nontreated patients (n=5); ii) patients under immunosuppressive treatment (n=5); iii) patients in remission without treatment (n=6); and two control groups iv) from the endemic (n=6) and v) non-endemic areas in Brazil (n=4). We used total RNA extracted from peripheral blood mononuclear cells and performed a comprehensive characterization of the variable region of immunoglobulin heavy chain (IGH) in IgG and IgM using next-generation sequencing. Results: Compared to individuals from a different area, we observed remarkably lower clonotype diversity in the B-cell immune repertoire of patients and controls from the endemic area (p < 0.02), suggesting that the immune repertoire in the endemic area is under geographically specific and intense environmental pressure. Moreover, we observed longer CDR3 sequences in patients, and we identified differential disease-specific usage of IGHV segments, including increased IGHV3-30 and decreased IGHV3-23 in patients with active disease (p < 0.04). Finally, our robust network analysis discovered clusters of CDR3 sequences uniquely observed in patients with PF. Discussion: Our results indicate that environmental factors, in addition to disease state, impact the characteristics of the repertoire. Our findings can be applied to further investigation of the environmental factors that trigger pemphigus and expand the knowledge for identifying new targeted and more effective therapies.


Assuntos
Pênfigo , Humanos , Leucócitos Mononucleares , Vesícula , Imunoglobulinas
15.
mBio ; 14(5): e0049223, 2023 Oct 31.
Artigo em Inglês | MEDLINE | ID: mdl-37623323

RESUMO

IMPORTANCE: Long-term prescription of proton pump inhibitors (PPIs) in patients with cirrhosis is common practice. However, in recent years, several observational studies have reported increased complications and negative prognostic effects of PPI treatment in these patients. Judging the significance of these associations is complicated by the fact that a plausible underlying pathomechanism has not been identified so far. In the present study, we address this important issue by investigating the impact of PPI treatment on subclinical bacterial translocation from the gut into the blood stream in patients with advanced cirrhosis and portal hypertension. Indeed, we report significantly aggravated bacterial translocation in cirrhosis patients receiving PPI treatment. This finding is highly relevant, as bacterial translocation is known to promote the development of complications and impair prognosis in patients with cirrhosis. Hence, the present study could establish a plausible link between PPI treatment and adverse effects in cirrhosis.


Assuntos
Hipertensão Portal , Inibidores da Bomba de Prótons , Humanos , Inibidores da Bomba de Prótons/efeitos adversos , Translocação Bacteriana , Cirrose Hepática/complicações , Cirrose Hepática/tratamento farmacológico , Cirrose Hepática/microbiologia , Hipertensão Portal/induzido quimicamente , Hipertensão Portal/complicações , Hipertensão Portal/tratamento farmacológico , Prognóstico
16.
Target Oncol ; 18(5): 749-765, 2023 09.
Artigo em Inglês | MEDLINE | ID: mdl-37488307

RESUMO

BACKGROUND: There is growing evidence supporting multidisciplinary molecular tumor boards (MTB) in solid tumors whereas hematologic malignancies remain underrepresented in this regard. OBJECTIVE: The present study aimed to assess the clinical relevance of MTBs in primary refractory diffuse large B-cell lymphomas/high-grade B-cell lymphomas with MYC and BCL2 rearrangements (prDLBCL/HGBL-MYC/BCL2) (n = 13) and HGBL, not otherwise specified (NOS), with MYC and BCL6 rearrangements (prHGBL, NOS-MYC/BCL6) (n = 6) based on our previously published whole-exome sequencing (WES) cohort. PATIENTS AND METHODS: For genomic analysis, the institutional MTB WES pipeline (University Cancer Center Schleswig-Holstein: UCCSH), certified for routine clinical diagnostics, was employed and supplemented by a comprehensive immunohistochemical work-up. Consecutive database research and annotation according to established evidence levels for molecularly stratified therapies was performed (NCT-DKTK/ESCAT). RESULTS: Molecularly tailored treatment options with NCT-DKTK evidence level of at least m2A were identified in each case. We classified mutations in accordance with biomarker/treatment baskets and detected a heterogeneous spectrum of targetable alterations affecting immune evasion (IE; n = 30), B-cell targets (BCT; n = 26), DNA damage repair (DDR; n = 20), tyrosine kinases (TK; n = 13), cell cycle (CC; n = 7), PI3K-MTOR-AKT pathway (PAM; n = 2), RAF-MEK-ERK cascade (RME; n = 1), and others (OTH; n = 11). CONCLUSION: Our virtual MTB approach identified potential molecularly targeted treatment options alongside targetable genomic signatures for both prDLBCL/HGBL-MYC/BCL2 and prHGBL, NOS-MYC/BCL6. These results underline the potential of MTB consultations in difficult-to-treat lymphomas early in the treatment sequence.


Assuntos
Linfoma Difuso de Grandes Células B , Proteínas Proto-Oncogênicas c-bcl-2 , Humanos , Proteínas Proto-Oncogênicas c-bcl-6/genética , Proteínas Proto-Oncogênicas c-bcl-2/genética , Proteínas Proto-Oncogênicas c-myc/genética , Linfoma Difuso de Grandes Células B/tratamento farmacológico , Linfoma Difuso de Grandes Células B/genética , Linfócitos B , Rearranjo Gênico
17.
Front Oncol ; 13: 1200897, 2023.
Artigo em Inglês | MEDLINE | ID: mdl-37384296

RESUMO

Introduction: Resistance in anti-cancer treatment is a result of clonal evolution and clonal selection. In chronic myeloid leukemia (CML), the hematopoietic neoplasm is predominantly caused by the formation of the BCR::ABL1 kinase. Evidently, treatment with tyrosine kinase inhibitors (TKIs) is tremendously successful. It has become the role model of targeted therapy. However, therapy resistance to TKIs leads to loss of molecular remission in about 25% of CML patients being partially due to BCR::ABL1 kinase mutations, while for the remaining cases, various other mechanisms are discussed. Methods: Here, we established an in vitro-TKI resistance model against the TKIs imatinib and nilotinib and performed exome sequencing. Results: In this model, acquired sequence variants in NRAS, KRAS, PTPN11, and PDGFRB were identified in TKI resistance. The well-known pathogenic NRAS p.(Gln61Lys) variant provided a strong benefit for CML cells under TKI exposure visible by increased cell number (6.2-fold, p < 0.001) and decreased apoptosis (-25%, p < 0.001), proving the functionality of our approach. The transfection of PTPN11 p.(Tyr279Cys) led to increased cell number (1.7-fold, p = 0.03) and proliferation (2.0-fold, p < 0.001) under imatinib treatment. Discussion: Our data demonstrate that our in vitro-model can be used to study the effect of specific variants on TKI resistance and to identify new driver mutations and genes playing a role in TKI resistance. The established pipeline can be used to study candidates acquired in TKI-resistant patients, thereby providing new options for the development of new therapy strategies to overcome resistance.

18.
BMC Bioinformatics ; 24(1): 182, 2023 May 03.
Artigo em Inglês | MEDLINE | ID: mdl-37138207

RESUMO

Despite the availability of batch effect correcting algorithms (BECA), no comprehensive tool that combines batch correction and evaluation of the results exists for microbiome datasets. This work outlines the Microbiome Batch Effects Correction Suite development that integrates several BECAs and evaluation metrics into a software package for the statistical computation framework R.


Assuntos
Microbiota , Software , Algoritmos
19.
Front Immunol ; 14: 1166620, 2023.
Artigo em Inglês | MEDLINE | ID: mdl-37063861

RESUMO

Schnitzler syndrome is a rare autoinflammatory disorder characterized by urticarial rash, joint pain, recurrent fever, leucocytosis, elevated C-reactive protein (CRP) and serum amyloid A (SAA), and monoclonal IgM or IgG gammopathy. According to the Strasbourg criteria, both urticarial rash and gammopathy are mandatorily required for the diagnosis of Schnitzler's syndrome. However, incomplete variants lacking either skin symptoms or monoclonal gammopathy have also been described. Here, we report a case in which the diagnosis of Schnitzler-like syndrome was made despite the absence of gammopathy, based on neutrophilic dermal inflammation, episodic and excessive increase in inflammatory parameters, and prompt response to anakinra, a soluble IL1 receptor antagonist (sIL-1RA). In addition, we detected neutrophil epitheliotropism, which is highly suggestive of autoinflammatory disease. Using whole-exome sequencing, we were unable to find a causative pathogenic mutation but did find several mutations possibly related to the inflammatory processes in this patient. This and other cases highlight that the existing Strasbourg criteria are too strict to capture Schnitzler-like syndromes that may respond well and rapidly to IL1 inhibition. Recurrent episodes of disease with normalization of inflammatory symptoms in the interval, rapid response to anakinra, and neutrophilic epitheliotropism in a lesional skin biopsy may help confirm the diagnosis of Schnitzler-like syndrome.


Assuntos
Exantema , Paraproteinemias , Síndrome de Schnitzler , Dermatopatias , Urticária , Humanos , Proteína Antagonista do Receptor de Interleucina 1/uso terapêutico , Síndrome de Schnitzler/diagnóstico , Síndrome de Schnitzler/tratamento farmacológico , Síndrome de Schnitzler/patologia
20.
Front Cell Dev Biol ; 11: 866847, 2023.
Artigo em Inglês | MEDLINE | ID: mdl-37091981

RESUMO

GFI1 is a transcriptional repressor and plays a pivotal role in regulating the differentiation of hematopoietic stem cells (HSCs) towards myeloid and lymphoid cells. Serial transplantation of Gfi1 deficient HSCs repopulated whole hematopoietic system but in a competitive setting involving wild-type HSCs, they lose this ability. The underlying mechanisms to this end are poorly understood. To better understand this, we used different mouse strains that express either loss of both Gfi1 alleles (Gfi1-KO), with reduced expression of GFI1 (GFI1-KD) or wild-type Gfi1/GFI1 (Gfi1-/GFI1-WT; corresponding to the mouse and human alleles). We observed that loss of Gfi1 or reduced expression of GFI1 led to a two to four fold lower number of HSCs (defined as Lin-Sca1+c-Kit+CD150+CD48-) compared to GFI1-WT mice. To study the functional influence of different levels of GFI1 expression on HSCs function, HSCs from Gfi1-WT (expressing CD45.1 + surface antigens) and HSCs from GFI1-KD or -KO (expressing CD45.2 + surface antigens) mice were sorted and co-transplanted into lethally irradiated host mice. Every 4 weeks, CD45.1+ and CD45.2 + on different lineage mature cells were analyzed by flow cytometry. At least 16 weeks later, mice were sacrificed, and the percentage of HSCs and progenitors including GMPs, CMPs and MEPs in the total bone marrow cells was calculated as well as their CD45.1 and CD45.2 expression. In the case of co-transplantation of GFI1-KD with Gfi1-WT HSCs, the majority of HSCs (81% ± 6%) as well as the majority of mature cells (88% ± 10%) originated from CD45.2 + GFI1-KD HSCs. In the case of co-transplantation of Gfi1-KO HSCs with Gfi1-WT HSCs, the majority of HSCs originated from CD45.2+ and therefore from Gfi1-KO (61% ± 20%); however, only a small fraction of progenitors and mature cells originated from Gfi1-KO HSCs (<1%). We therefore in summary propose that GFI1 has a dose-dependent role in the self-renewal and differentiation of HSCs.

SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA