Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 119
Filtrar
Mais filtros








Base de dados
Intervalo de ano de publicação
1.
ISME Commun ; 4(1): ycae080, 2024 Jan.
Artigo em Inglês | MEDLINE | ID: mdl-38946848

RESUMO

The candidate phyla radiation (CPR) represents a distinct monophyletic clade and constitutes a major portion of the tree of life. Extensive efforts have focused on deciphering the functional diversity of its members, primarily using sequencing-based techniques. However, cultivation success remains scarce, presenting a significant challenge, particularly in CPR-dominated groundwater microbiomes characterized by low biomass. Here, we employ an advanced high-throughput droplet microfluidics technique to enrich CPR taxa from groundwater. Utilizing a low-volume filtration approach, we successfully harvested a microbiome resembling the original groundwater microbial community. We assessed CPR enrichment in droplet and aqueous bulk cultivation for 30 days using a novel CPR-specific primer to rapidly track the CPR fraction through the cultivation attempts. The combination of soil extract and microbial-derived necromass provided the most supportive conditions for CPR enrichment. Employing these supplemented conditions, droplet cultivation proved superior to bulk cultivation, resulting in up to a 13-fold CPR enrichment compared to a 1- to 2-fold increase in bulk cultivation. Amplicon sequencing revealed 10 significantly enriched CPR orders. The highest enrichment in CPRs was observed for some unknown members of the Parcubacteria order, Cand. Jorgensenbacteria, and unclassified UBA9983. Furthermore, we identified co-enriched putative host taxa, which may guide more targeted CPR isolation approaches in subsequent investigations.

2.
Sensors (Basel) ; 24(14)2024 Jul 11.
Artigo em Inglês | MEDLINE | ID: mdl-39065901

RESUMO

Due to its high spatial resolution, Raman microspectroscopy allows for the analysis of single microbial cells. Since Raman spectroscopy analyzes the whole cell content, this method is phenotypic and can therefore be used to evaluate cellular changes. In particular, labeling with stable isotopes (SIPs) enables the versatile use and observation of different metabolic states in microbes. Nevertheless, static measurements can only analyze the present situation and do not allow for further downstream evaluations. Therefore, a combination of Raman analysis and cell sorting is necessary to provide the possibility for further research on selected bacteria in a sample. Here, a new microfluidic approach for Raman-activated continuous-flow sorting of bacteria using an optical setup for image-based particle sorting with synchronous acquisition and analysis of Raman spectra for making the sorting decision is demonstrated, showing that active cells can be successfully sorted by means of this microfluidic chip.


Assuntos
Bactérias , Marcação por Isótopo , Análise Espectral Raman , Análise Espectral Raman/métodos , Marcação por Isótopo/métodos , Bactérias/metabolismo , Citometria de Fluxo/métodos , Microfluídica/métodos
3.
Environ Microbiome ; 19(1): 41, 2024 Jun 20.
Artigo em Inglês | MEDLINE | ID: mdl-38902796

RESUMO

BACKGROUND: To better understand the influence of habitat on the genetic content of bacteria, with a focus on members of Candidate Phyla Radiation (CPR) bacteria, we studied the effects of transitioning from soil via seepage waters to groundwater on genomic composition of ultra-small Parcubacteria, the dominating CPR class in seepage waters, using genome resolved metagenomics. RESULTS: Bacterial metagenome-assembled genomes (MAGs), (318 total, 32 of Parcubacteria) were generated from seepage waters and compared directly to groundwater counterparts. The estimated average genome sizes of members of major phyla Proteobacteria, Bacteroidota and Cand. Patescibacteria (Candidate Phyla Radiation - CPR bacteria) were significantly higher in soil-seepage water as compared to their groundwater counterparts. Seepage water Parcubacteria (Paceibacteria) exhibited 1.18-fold greater mean genome size and 2-fold lower mean proportion of pseudogenes than those in groundwater. Bacteroidota and Proteobacteria also showed a similar trend of reduced genomes in groundwater compared to seepage. While exploring gene loss and adaptive gains in closely related CPR lineages in groundwater, we identified a membrane protein, and a lipoglycopeptide resistance gene unique to a seepage Parcubacterium genome. A nitrite reductase gene was also identified and was unique to the groundwater Parcubacteria genomes, likely acquired from other planktonic microbes via horizontal gene transfer. CONCLUSIONS: Overall, our data suggest that bacteria in seepage waters, including ultra-small Parcubacteria, have significantly larger genomes and higher metabolic enrichment than their groundwater counterparts, highlighting possible genome streamlining of the latter in response to habitat selection in an oligotrophic environment.

5.
Sci Total Environ ; 917: 170384, 2024 Mar 20.
Artigo em Inglês | MEDLINE | ID: mdl-38281639

RESUMO

Most studies of groundwater ecosystems target planktonic microbes, which are easily obtained via water samples. In contrast, little is known about the diversity and function of microbes adhering to rock surfaces, particularly to consolidated rocks. To investigate microbial attachment to rock surfaces, we incubated rock chips from fractured aquifers in limestone-mudstone alternations in bioreactors fed with groundwater from two wells representing oxic and anoxic conditions. Half of the chips were coated with iron oxides, representing common secondary mineralization in fractured rock. Our time-series analysis showed bacteria colonizing the chips within two days, reaching cell numbers up to 4.16 × 105 cells/mm2 after 44 days. Scanning electron microscopy analyses revealed extensive colonization but no multi-layered biofilms, with chips from oxic bioreactors more densely colonized than from anoxic ones. Estimated attached-to-planktonic cell ratios yielded values of up to 106: 1 and 103: 1, for oxic and anoxic aquifers, respectively. We identified distinct attached and planktonic communities with an overlap between 17 % and 42 %. Oxic bioreactors were dominated by proteobacterial genera Aquabacterium and Rhodoferax, while Rheinheimera and Simplicispira were the key players of anoxic bioreactors. Motility, attachment, and biofilm formation traits were predicted in major genera based on groundwater metagenome-assembled genomes and reference genomes. Early rock colonizers appeared to be facultative autotrophs, capable of fixing CO2 to synthesize biomass and a biofilm matrix. Late colonizers were predicted to possess biofilm degrading enzymes such as beta-glucosidase, beta-galactosidase, amylases. Fe-coated chips of both bioreactors featured more potential iron reducers and oxidizers than bare rock chips. As secondary minerals can also serve as energy source, they might favor primary production and thus contribute to subsurface ecosystem services like carbon fixation. Since most subsurface microbes seem to be attached, their contribution to ecosystem services should be considered in future studies.


Assuntos
Água Subterrânea , Ferro , Ecossistema , Bactérias , Carbonatos , Água Subterrânea/microbiologia
6.
Front Microbiol ; 14: 1252498, 2023.
Artigo em Inglês | MEDLINE | ID: mdl-37901809

RESUMO

Microbial communities are key players in groundwater ecosystems. In this dark environment, heterotrophic microbes rely on biomass produced by the activity of lithoautotrophs or on the degradation of organic matter seeping from the surface. Most studies on bacterial diversity in groundwater habitats are based on 16S gene sequencing and full genome reconstructions showing potential metabolic pathways used in these habitats. However, molecular-based studies do not allow for the assessment of population dynamics over time or the assimilation of specific compounds and their biochemical transformation by microbial communities. Therefore, in this study, we combined DNA-, phospholipid fatty acid-, and metabolomic-stable isotope probing to target and identify heterotrophic bacteria in the groundwater setting of the Hainich Critical Zone Exploratory (CZE), focusing on 2 aquifers with different physico-chemical conditions (oxic and anoxic). We incubated groundwater from 4 different wells using either 13C-labeled veratric acid (a lignin-derived compound) (single labeling) or a combination of 13CO2 and D-labeled veratric acid (dual labeling). Our results show that heterotrophic activities dominate all groundwater sites. We identified bacteria with the potential to break down veratric acid (Sphingobium or Microbacterium). We observed differences in heterotrophic activities between the oxic and anoxic aquifers, indicating local adaptations of bacterial populations. The dual labeling experiments suggested that the serine pathway is an important carbon assimilation pathway and that organic matter was an important source of hydrogen in the newly produced lipids. These experiments also yielded different labeled taxa compared to the single labeling experiments, showing that there exists a complex interaction network in the groundwater habitats.

7.
Microbiome ; 11(1): 210, 2023 09 25.
Artigo em Inglês | MEDLINE | ID: mdl-37749660

RESUMO

BACKGROUND: The terrestrial subsurface is home to a significant proportion of the Earth's microbial biomass. Our understanding about terrestrial subsurface microbiomes is almost exclusively derived from groundwater and porous sediments mainly by using 16S rRNA gene surveys. To obtain more insights about biomass of consolidated rocks and the metabolic status of endolithic microbiomes, we investigated interbedded limestone and mudstone from the vadose zone, fractured aquifers, and deep aquitards. RESULTS: By adapting methods from microbial archaeology and paleogenomics, we could recover sufficient DNA for downstream metagenomic analysis from seven rock specimens independent of porosity, lithology, and depth. Based on the extracted DNA, we estimated between 2.81 and 4.25 × 105 cells × g-1 rock. Analyzing DNA damage patterns revealed paleome signatures (genetic records of past microbial communities) for three rock specimens, all obtained from the vadose zone. DNA obtained from deep aquitards isolated from surface input was not affected by DNA decay indicating that water saturation and not flow is controlling subsurface microbial survival. Decoding the taxonomy and functional potential of paleome communities revealed increased abundances for sequences affiliated with chemolithoautotrophs and taxa such as Cand. Rokubacteria. We also found a broader metabolic potential in terms of aromatic hydrocarbon breakdown, suggesting a preferred utilization of sedimentary organic matter in the past. CONCLUSIONS: Our study suggests that limestones function as archives for genetic records of past microbial communities including those sensitive to environmental stress at modern times, due to their specific conditions facilitating long-term DNA preservation. Video Abstract.


Assuntos
Genômica , Microbiota , Paleontologia , RNA Ribossômico 16S/genética , Microbiota/genética , Metagenoma
8.
Water Res ; 244: 120426, 2023 Oct 01.
Artigo em Inglês | MEDLINE | ID: mdl-37597444

RESUMO

High rates of CO2 fixation and the genetic potential of various groundwater microbes for autotrophic activity have shown that primary production is an important source of organic C in groundwater ecosystems. However, the contribution of specific chemolithoautotrophic groups such as S-oxidizing bacteria (SOB) to groundwater primary production and their adaptation strategies remain largely unknown. Here, we stimulated anoxic groundwater microcosms with reduced S and sampled the microbial community after 1, 3 and 6 weeks. Genome-resolved metaproteomics was combined with 50at-% 13CO2 stable isotope probing to follow the C flux through the microbial food web and infer traits expressed by active SOB in the groundwater microcosms. Already after 7 days, 90% of the total microbial biomass C in the microcosms was replaced by CO2-derived C, increasing to 97% at the end of incubation. Stable Isotope Cluster Analysis revealed active autotrophs, characterized by a uniform 13C-incorporation of 45% in their peptides, to dominate the microbial community throughout incubation. Mixo- and heterotrophs, characterized by 10 to 40% 13C-incorporation, utilized the primarily produced organic C. Interestingly, obligate autotrophs affiliated with Sulfuricella and Sulfuritalea contained traits enabling the storage of elemental S in globules to maintain primary production under energy limitation. Others related to Sulfurimonas seemed to rapidly utilize substrates for fast proliferation, and most autotrophs further maximized their energy yield via efficient denitrification and the potential for H2 oxidation. Mixotrophic SOB, belonging to Curvibacter or Polaromonas, enhanced metabolic flexibility by using organic compounds to satisfy their C requirements. Time series data spanning eight years further revealed that key taxa of our microcosms composed up to 15% of the microbial groundwater community, demonstrating their in-situ importance. This showed that SOB, by using different metabolic strategies, are able to account for high rates of primary production in groundwater, especially at sites limited to geogenic nutrient sources. The widespread presence of SOB with traits such as S storage, H2 oxidation, and organic C utilization in many aquatic habitats further suggested that metabolic versatility governs S-fueled primary production in the environment.


Assuntos
Água Subterrânea , Microbiota , Dióxido de Carbono/metabolismo , Bactérias/metabolismo , Enxofre/metabolismo , Água Subterrânea/química
9.
ISME J ; 17(10): 1601-1611, 2023 10.
Artigo em Inglês | MEDLINE | ID: mdl-37422599

RESUMO

The ecophysiology of complete ammonia-oxidizing bacteria (CMX) of the genus Nitrospira and their widespread occurrence in groundwater suggests that CMX bacteria have a competitive advantage over ammonia-oxidizing bacteria (AOB) and archaea (AOA) in these environments. However, the specific contribution of their activity to nitrification processes has remained unclear. We aimed to disentangle the contribution of CMX, AOA and AOB to nitrification and to identify the environmental drivers of their niche differentiation at different levels of ammonium and oxygen in oligotrophic carbonate rock aquifers. CMX ammonia monooxygenase sub-unit A (amoA) genes accounted on average for 16 to 75% of the total groundwater amoA genes detected. Nitrification rates were positively correlated to CMX clade A associated phylotypes and AOB affiliated with Nitrosomonas ureae. Short-term incubations amended with the nitrification inhibitors allylthiourea and chlorate suggested that AOB contributed a large fraction to overall ammonia oxidation, while metaproteomics analysis confirmed an active role of CMX in both ammonia and nitrite oxidation. Ecophysiological niche differentiation of CMX clades A and B, AOB and AOA was linked to their requirements for ammonium, oxygen tolerance, and metabolic versatility. Our results demonstrate that despite numerical predominance of CMX, the first step of nitrification in oligotrophic groundwater appears to be primarily governed by AOB. Higher growth yields at lower ammonia turnover rates and energy derived from nitrite oxidation most likely enable CMX to maintain consistently high populations.


Assuntos
Compostos de Amônio , Água Subterrânea , Nitrificação , Amônia/metabolismo , Oxirredução , Microbiologia do Solo , Bactérias , Archaea , Compostos de Amônio/metabolismo , Oxigênio/metabolismo , Filogenia
10.
FEMS Microbiol Ecol ; 99(2)2023 01 24.
Artigo em Inglês | MEDLINE | ID: mdl-36623865

RESUMO

Sideroxydans sp. CL21 is a microaerobic, acid-tolerant Fe(II)-oxidizer, isolated from the Schlöppnerbrunnen fen. Since the genome size of Sideroxydans sp. CL21 is 21% larger than that of the neutrophilic Sideroxydans lithotrophicus ES-1, we hypothesized that strain CL21 contains additional metabolic traits to thrive in the fen. The common genomic content of both strains contains homologs of the putative Fe(II) oxidation genes, mtoAB and cyc2. A large part of the accessory genome in strain CL21 contains genes linked to utilization of alternative electron donors, including NiFe uptake hydrogenases, and genes encoding lactate uptake and utilization proteins, motility and biofilm formation, transposable elements, and pH homeostasis mechanisms. Next, we incubated the strain in different combinations of electron donors and characterized the fen microbial communities. Sideroxydans spp. comprised 3.33% and 3.94% of the total relative abundance in the peatland soil and peatland water, respectively. Incubation results indicate Sideroxydans sp. CL21 uses H2 and thiosulfate, while lactate only enhances growth when combined with Fe, H2, or thiosulfate. Rates of H2 utilization were highest in combination with other substrates. Thus, Sideroxydans sp. CL21 is a mixotroph, growing best by simultaneously using substrate combinations, which helps to thrive in dynamic and complex habitats.


Assuntos
Ferro , Tiossulfatos , Ferro/metabolismo , Oxirredução , Ecossistema , Compostos Ferrosos/metabolismo
11.
Environ Microbiol ; 24(11): 5437-5449, 2022 11.
Artigo em Inglês | MEDLINE | ID: mdl-36123312

RESUMO

The candidate phylum Omnitrophica-recently termed Omnitrophota, and originally known as OP3-is an understudied bacterial clade that has primarily been found in aquatic ecosystems. To characterize the diversity and ecology of this phylum, we reconstructed 55 Omnitrophota metagenome-assembled genomes (MAGs) from a well-characterized groundwater system within central Germany and placed them within the context of publicly available genomes. Seven clades were identified, four of which contained novel genomes obtained from our groundwater system. All clades exhibited the capacity for type IV pili, type II secretion systems, glycogen storage, and carbohydrate degradation. Only the characterized Cand. Omnitrophus magneticus genome exhibited functions associated with magnetosome construction. Clades were characterized by sets of traits rather than unique pathways, which were then used to infer ecological strategies. These lifestyles consisted of mixotrophs, obligate fermenters, and versatile respiratory heterotrophs. Patterns in 16S rRNA gene amplicons from a 6 years, monthly sampled groundwater time-series dataset reflected the persistent and widespread occurrence of Clade 7 Wood-Ljungdahl utilizing mixotrophs and highlight this group as a core member of the groundwater community. Overall, this study uncovered, characterized, and contextualized the metabolic and phylogenetic diversity within phylum Omnitrophota, and predicts that environmental populations may mediate both nitrogen and sulfur cycling, along with organic matter production and degradation within aquatic ecosystems.


Assuntos
Ecossistema , Metagenoma , RNA Ribossômico 16S/genética , RNA Ribossômico 16S/metabolismo , Filogenia , Bactérias
12.
Microbiol Spectr ; 10(4): e0043722, 2022 08 31.
Artigo em Inglês | MEDLINE | ID: mdl-35699474

RESUMO

Pristine groundwater is a highly stable environment with microbes adapted to dark, oligotrophic conditions. Input events like heavy rainfalls can introduce the excess particulate organic matter, including surface-derived microorganisms, thereby disturbing the groundwater microbiome. Some surface-derived bacteria will not survive this translocation, leading to an input of necromass to the groundwater. Here, we investigated the effects of necromass addition to the microbial community in fractured bedrock groundwater, using groundwater mesocosms as model systems. We followed the uptake of 13C-labeled necromass by the bacterial and eukaryotic groundwater community quantitatively and over time using a complementary protein-stable and DNA-stable isotope probing approach. Necromass was rapidly depleted in the mesocosms within 4 days, accompanied by a strong decrease in Shannon diversity and a 10-fold increase in bacterial 16S rRNA gene copy numbers. Species of Flavobacterium, Massilia, Rheinheimera, Rhodoferax, and Undibacterium dominated the microbial community within 2 days and were identified as key players in necromass degradation, based on a 13C incorporation of >90% in their peptides. Their proteomes comprised various proteins for uptake and transport functions and amino acid metabolization. After 4 and 8 days, the autotrophic and mixotrophic taxa Nitrosomonas, Limnohabitans, Paucibacter, and Acidovorax increased in abundance with a 13C incorporation between 0.5% and 23%. Likewise, eukaryotes assimilated necromass-derived carbon either directly or indirectly. Our data point toward a fast and exclusive uptake of labeled necromass by a few specialists followed by a concerted action of groundwater microorganisms, including autotrophs presumably fueled by released, reduced nitrogen and sulfur compounds generated during necromass degradation. IMPORTANCE Subsurface microbiomes provide essential ecosystem services, like the generation of drinking water. These ecosystems are devoid of light-driven primary production, and microbial life is adapted to the resulting oligotrophic conditions. Modern groundwater is most vulnerable to anthropogenic and climatic impacts. Heavy rainfalls, which will increase with climate change, can result in high surface inputs into shallow aquifers by percolation or lateral flow. These inputs include terrestrial organic matter and surface-derived microbes that are not all capable to flourish in aquatic subsurface habitats. Here, we investigated the response of groundwater mesocosms to the addition of bacterial necromass, simulating event-driven surface input. We found that the groundwater microbiome responds with a rapid bloom of only a few primary degraders, followed by the activation of typical groundwater autotrophs and mixotrophs, as well as eukaryotes. Our results suggest that this multiphase strategy is essential to maintain the balance of the groundwater microbiome to provide ecosystem services.


Assuntos
Água Subterrânea , Microbiota , Bactérias/metabolismo , Água Subterrânea/química , Água Subterrânea/microbiologia , Nitrogênio/metabolismo , RNA Ribossômico 16S/genética
13.
R Soc Open Sci ; 9(5): 211553, 2022 May.
Artigo em Inglês | MEDLINE | ID: mdl-35620008

RESUMO

Iron-reducing and iron-oxidizing bacteria are of interest in a variety of environmental and industrial applications. Such bacteria often co-occur at oxic-anoxic gradients in aquatic and terrestrial habitats. In this paper, we present the first computational agent-based model of microbial iron cycling, between the anaerobic ferric iron (Fe3+)-reducing bacteria Shewanella spp. and the microaerophilic ferrous iron (Fe2+)-oxidizing bacteria Sideroxydans spp. By including the key processes of reduction/oxidation, movement, adhesion, Fe2+-equilibration and nanoparticle formation, we derive a core model which enables hypothesis testing and prediction for different environmental conditions including temporal cycles of oxic and anoxic conditions. We compared (i) combinations of different Fe3+-reducing/Fe2+-oxidizing modes of action of the bacteria and (ii) system behaviour for different pH values. We predicted that the beneficial effect of a high number of iron-nanoparticles on the total Fe3+ reduction rate of the system is not only due to the faster reduction of these iron-nanoparticles, but also to the nanoparticles' additional capacity to bind Fe2+ on their surfaces. Efficient iron-nanoparticle reduction is confined to pH around 6, being twice as high than at pH 7, whereas at pH 5 negligible reduction takes place. Furthermore, in accordance with experimental evidence our model showed that shorter oxic/anoxic periods exhibit a faster increase of total Fe3+ reduction rate than longer periods.

14.
Sci Rep ; 12(1): 7451, 2022 05 06.
Artigo em Inglês | MEDLINE | ID: mdl-35523988

RESUMO

Microbial life in soil is fueled by dissolved organic matter (DOM) that leaches from the litter layer. It is well known that decomposer communities adapt to the available litter source, but it remains unclear if they functionally compete or synergistically address different litter types. Therefore, we decomposed beech, oak, pine and grass litter from two geologically distinct sites in a lab-scale decomposition experiment. We performed a correlative network analysis on the results of direct infusion HR-MS DOM analysis and cross-validated functional predictions from 16S rRNA gene amplicon sequencing and with DOM and metaproteomic analyses. Here we show that many functions are redundantly distributed within decomposer communities and that their relative expression is rapidly optimized to address litter-specific properties. However, community changes are likely forced by antagonistic mechanisms as we identified several natural antibiotics in DOM. As a consequence, the decomposer community is specializing towards the litter source and the state of decomposition (community divergence) but showing similar litter metabolomes (metabolome convergence). Our multi-omics-based results highlight that DOM not only fuels microbial life, but it additionally holds meta-metabolomic information on the functioning of ecosystems.


Assuntos
Ecossistema , Microbiota , Matéria Orgânica Dissolvida , Microbiota/genética , Folhas de Planta/metabolismo , Plantas/genética , RNA Ribossômico 16S/genética , RNA Ribossômico 16S/metabolismo , Solo , Microbiologia do Solo
15.
Anal Chem ; 94(22): 7759-7766, 2022 06 07.
Artigo em Inglês | MEDLINE | ID: mdl-35608509

RESUMO

Carbon cycling is one of the major biogeochemical processes driven by bacteria. Autotrophic bacteria convert carbon dioxide (CO2) into organic compounds that are used by heterotrophs. Mixotrophic bacteria can employ both autotrophy and heterotrophy for growth. The characterization of the lifestyle of individual cells is essential to understand the microbial activity and thus reveal the implication of bacteria in the carbon flux. In this study, we used groundwater bacteria to investigate the potential of Raman-D2O labeling in combination with chemometrics to identify the carbon assimilation strategies of bacteria. Classification models were built using principal component analysis (PCA) followed by linear discriminant analysis (LDA). Autotrophs assimilated a significantly higher amount (mean C-D ratio between 16.63 and 21.69%) of deuterium than heterotrophs. The C-D signal only provides information about the activity since it appears in the Raman-silent region, where no interference with the taxonomic information is expected. The classification between autotrophs and heterotrophs achieved an overall accuracy of 96.3%. In the validation step with an independent dataset containing species not included in the model, the PCA-LDA model achieved 100% accuracy. This demonstrated that the C-D signal contributed to the identification of autotrophic and heterotrophic bacterial cells. This work reports a robust, rapid, and nondestructive approach for the identification of single cells based on their carbon acquisition strategies. The present study foresees the potential of Raman-D2O labeling as a promising method for automated discrimination of in situ functional activities of bacteria in environmental systems.


Assuntos
Bactérias , Ciclo do Carbono , Processos Autotróficos , Dióxido de Carbono , Processos Heterotróficos
17.
Anal Bioanal Chem ; 414(1): 601-611, 2022 Jan.
Artigo em Inglês | MEDLINE | ID: mdl-34297136

RESUMO

Human activities have greatly increased the input of reactive nitrogen species into the environment and disturbed the balance of the global N cycle. This imbalance may be offset by bacterial denitrification, an important process in maintaining the ecological balance of nitrogen. However, our understanding of the activity of mixotrophic denitrifying bacteria is not complete, as most research has focused on heterotrophic denitrification. The aim of this study was to investigate substrate preferences for two mixotrophic denitrifying bacterial strains, Acidovorax delafieldii and Hydrogenophaga taeniospiralis, under heterotrophic, autotrophic or mixotrophic conditions. This complex analysis was achieved by simultaneous identification and quantification of H2, O2, CO2, 14N2, 15N2 and 15N2O in course of the denitrification process with help of cavity-enhanced Raman spectroscopic (CERS) multi-gas analysis. To disentangle electron donor preferences for both bacterial strains, microcosm-based incubation experiments under varying substrate conditions were conducted. We found that Acidovorax delafieldii preferentially performed heterotrophic denitrification in the mixotrophic sub-experiments, while Hydrogenophaga taeniospiralis preferred autotrophic denitrification in the mixotrophic incubation. These observations were supported by stoichiometric calculations. The results demonstrate the prowess of advanced Raman multi-gas analysis to study substrate use and electron donor preferences in denitrification, based on the comprehensive quantification of complex microbial gas exchange processes.


Assuntos
Reatores Biológicos , Desnitrificação , Bactérias , Reatores Biológicos/microbiologia , Elétrons , Humanos , Nitratos/química , Nitrogênio , Análise Espectral Raman
18.
ISME J ; 16(4): 1153-1162, 2022 04.
Artigo em Inglês | MEDLINE | ID: mdl-34876683

RESUMO

Current understanding of organic carbon inputs into ecosystems lacking photosynthetic primary production is predicated on data and inferences derived almost entirely from metagenomic analyses. The elevated abundances of putative chemolithoautotrophs in groundwaters suggest that dark CO2 fixation is an integral component of subsurface trophic webs. To understand the impact of autotrophically fixed carbon, the flux of CO2-derived carbon through various populations of subsurface microbiota must first be resolved, both quantitatively and temporally. Here we implement novel Stable Isotope Cluster Analysis to render a time-resolved and quantitative evaluation of 13CO2-derived carbon flow through a groundwater community in microcosms stimulated with reduced sulfur compounds. We demonstrate that mixotrophs, not strict autotrophs, were the most abundant active organisms in groundwater microcosms. Species of Hydrogenophaga, Polaromonas, Dechloromonas, and other metabolically versatile mixotrophs drove the production and remineralization of organic carbon. Their activity facilitated the replacement of 43% and 80% of total microbial carbon stores in the groundwater microcosms with 13C in just 21 and 70 days, respectively. The mixotrophs employed different strategies for satisfying their carbon requirements by balancing CO2 fixation and uptake of available organic compounds. These different strategies might provide fitness under nutrient-limited conditions, explaining the great abundances of mixotrophs in other oligotrophic habitats, such as the upper ocean and boreal lakes.


Assuntos
Água Subterrânea , Microbiota , Carbono , Dióxido de Carbono
19.
Environ Microbiome ; 16(1): 24, 2021 Dec 14.
Artigo em Inglês | MEDLINE | ID: mdl-34906246

RESUMO

BACKGROUND: The highly diverse Cand. Patescibacteria are predicted to have minimal biosynthetic and metabolic pathways, which hinders understanding of how their populations differentiate in response to environmental drivers or host organisms. Their mechanisms employed to cope with oxidative stress are largely unknown. Here, we utilized genome-resolved metagenomics to investigate the adaptive genome repertoire of Patescibacteria in oxic and anoxic groundwaters, and to infer putative host ranges. RESULTS: Within six groundwater wells, Cand. Patescibacteria was the most dominant (up to 79%) super-phylum across 32 metagenomes sequenced from DNA retained on 0.2 and 0.1 µm filters after sequential filtration. Of the reconstructed 1275 metagenome-assembled genomes (MAGs), 291 high-quality MAGs were classified as Cand. Patescibacteria. Cand. Paceibacteria and Cand. Microgenomates were enriched exclusively in the 0.1 µm fractions, whereas candidate division ABY1 and Cand. Gracilibacteria were enriched in the 0.2 µm fractions. On average, Patescibacteria enriched in the smaller 0.1 µm filter fractions had 22% smaller genomes, 13.4% lower replication measures, higher proportion of rod-shape determining proteins, and of genomic features suggesting type IV pili mediated cell-cell attachments. Near-surface wells harbored Patescibacteria with higher replication rates than anoxic downstream wells characterized by longer water residence time. Except prevalence of superoxide dismutase genes in Patescibacteria MAGs enriched in oxic groundwaters (83%), no major metabolic or phylogenetic differences were observed. The most abundant Patescibacteria MAG in oxic groundwater encoded a nitrate transporter, nitrite reductase, and F-type ATPase, suggesting an alternative energy conservation mechanism. Patescibacteria consistently co-occurred with one another or with members of phyla Nanoarchaeota, Bacteroidota, Nitrospirota, and Omnitrophota. Among the MAGs enriched in 0.2 µm fractions,, only 8% Patescibacteria showed highly significant one-to-one correlation, mostly with Omnitrophota. Motility and transport related genes in certain Patescibacteria were highly similar to genes from other phyla (Omnitrophota, Proteobacteria and Nanoarchaeota). CONCLUSION: Other than genes to cope with oxidative stress, we found little genomic evidence for niche adaptation of Patescibacteria to oxic or anoxic groundwaters. Given that we could detect specific host preference only for a few MAGs, we speculate that the majority of Patescibacteria is able to attach multiple hosts just long enough to loot or exchange supplies.

SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA