Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 1 de 1
Filtrar
Mais filtros








Base de dados
Intervalo de ano de publicação
1.
J Neuroimmune Pharmacol ; 16(1): 169-180, 2021 03.
Artigo em Inglês | MEDLINE | ID: mdl-31776836

RESUMO

Despite the introduction of antiretroviral (ARV) therapy (ART), approximately 30-50% of people living with human immunodeficiency virus-1 (HIV-1) will develop a spectrum of measurable neurocognitive dysfunction, collectively called HIV-associated neurocognitive disorder (HAND). While the clinical manifestations of HAND have changed with the advent of ART, certain pathological features have endured, including white matter alterations and dysfunction. The persistence of white matter alterations in the post-ART era suggests that ARV drugs themselves may contribute to HAND pathology. Our group has previously demonstrated that two ARV compounds from the protease inhibitor (PI) class, ritonavir and lopinavir, inhibit oligodendrocyte maturation and myelin protein production. We hypothesized that other members of the PI class, saquinavir and darunavir, could also negatively impact oligodendrocyte differentiation. Here we demonstrate that treating primary rat oligodendrocyte precursor cells with therapeutically relevant concentrations of either ARV drug results in a concentration-dependent inhibition of oligodendrocyte maturation in vitro. Furthermore, we show that acidifying endolysosomal pH via a mucolipin transient receptor potential channel 1 (TRPML1) agonist provides protection against saquinavir- and darunavir-induced inhibition of oligodendrocyte maturation. Moreover, our findings suggest, for the first time, an imperative role of proper endolysosomal pH in regulating OL differentation, and that therapeutic targeting of endolysosomes may provide protection against ARV-induced oligodendrocyte dysregulation. Graphical Abstract Treatment of primary rat oligodendrocyte precursor cells with therapeutically relevant concentrations of either antiretroviral compound of the protease inhibitor class, darunavir or saquinavir, results in a concentration-dependent inhibition of oligodendrocyte maturation in vitro. Additionally, in darunavir or saquinavir-treated cultures we observed a concentration-dependent decrease in the number of acidic lysosomes, via immunostaining with LysoTracker Red, compared with vehicle-treated cultures. Finally, we showed that acidifying endolysosomal pH via a mucolipin transient receptor potential channel 1 (TRPML1) agonist provides protection against saquinavir- or darunavir-induced inhibition of oligodendrocyte maturation. Our findings suggest, for the first time, a critical role of proper endolysosomal pH in regulating OL differentation, and that therapeutic targeting of endolysosomes may provide protection against antiretroviral-induced oligodendrocyte dysregulation.


Assuntos
Darunavir/farmacologia , Endossomos/efeitos dos fármacos , Inibidores da Protease de HIV/farmacologia , Lisossomos/efeitos dos fármacos , Oligodendroglia/efeitos dos fármacos , Saquinavir/farmacologia , Animais , Apoptose/efeitos dos fármacos , Diferenciação Celular/efeitos dos fármacos , Células Cultivadas , Darunavir/toxicidade , Depressão Química , Relação Dose-Resposta a Droga , Endossomos/química , Inibidores da Protease de HIV/toxicidade , Concentração de Íons de Hidrogênio , Lisossomos/química , Proteínas da Mielina/biossíntese , Estresse Oxidativo , Ftalimidas/farmacologia , Quinolinas/farmacologia , Ratos , Ratos Sprague-Dawley , Saquinavir/toxicidade , Canais de Potencial de Receptor Transitório/agonistas
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA