Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 2 de 2
Filtrar
Mais filtros








Base de dados
Intervalo de ano de publicação
1.
Biochim Biophys Acta Gen Subj ; 1861(6): 1578-1586, 2017 Jun.
Artigo em Inglês | MEDLINE | ID: mdl-27919801

RESUMO

BACKGROUND: This work is focused on mechanisms of uptake in cancer cells of rationally designed, covalently assembled nanoparticles, made of superparamagnetic iron oxide nanoparticles (SPIONs), fluorophores (doxorubicin or Nile Blue), polyethylene glycol (PEG) and folic acid (FA), referred hereinafter as SFP-FA. METHODS: SFP-FA were characterized by DLS, zetametry and fluorescence spectroscopy. The SFP-FA uptake in cancer cells was monitored using fluorescence-based methods like fluorescence-assisted cell sorting, CLSM with single-photon and two-photon excitation. The SFP-FA endocytosis was also analyzed with electron microscopy approaches: TEM, HAADF-STEM and EELS. RESULTS: The SFP-FA have zeta potential below -6mW and stable hydrodynamic diameter close to 100nm in aqueous suspensions of pH range from 5 to 8. They contain ca. 109 PEG-FA, 480 PEG-OCH3 and 22-27 fluorophore molecules per SPION. The fluorophores protected under the PEG shell allows a reliable detection of intracellular NPs. SFP-FA readily enter into all the cancer cell lines studied and accumulate in lysosomes, mostly via clathrin-dependent endocytosis, whatever the FR status on the cells. CONCLUSIONS: The present study highlights the advantages of rational design of nanosystems as well as the possible involvement of direct molecular interactions of PEG and FA with cellular membranes, not limited to FA-FR recognition, in the mechanisms of their endocytosis. GENERAL SIGNIFICANCE: Composition, magnetic and optical properties of the SFP-FA as well their ability to enter cancer cells are promising for their applications in cancer theranosis. Combination of complementary analytical approaches is relevant to understand the nanoparticles behavior in suspension and in contact with cells.


Assuntos
Antibióticos Antineoplásicos/metabolismo , Neoplasias da Mama/metabolismo , Clatrina/metabolismo , Doxorrubicina/metabolismo , Portadores de Fármacos , Endocitose , Ácido Fólico/metabolismo , Magnetismo/métodos , Nanopartículas de Magnetita , Nanomedicina/métodos , Polietilenoglicóis/química , Neoplasias do Colo do Útero/metabolismo , Antibióticos Antineoplásicos/química , Antibióticos Antineoplásicos/farmacologia , Neoplasias da Mama/tratamento farmacológico , Cavéolas/metabolismo , Vesículas Revestidas por Clatrina/metabolismo , Doxorrubicina/química , Doxorrubicina/farmacologia , Endossomos/metabolismo , Feminino , Ácido Fólico/química , Células HeLa , Humanos , Lisossomos/metabolismo , Células MCF-7 , Nanopartículas de Magnetita/química , Microscopia Confocal , Microscopia Eletrônica de Transmissão e Varredura , Microscopia de Fluorescência por Excitação Multifotônica , Espectroscopia de Perda de Energia de Elétrons , Neoplasias do Colo do Útero/tratamento farmacológico
2.
Langmuir ; 28(2): 1496-505, 2012 Jan 17.
Artigo em Inglês | MEDLINE | ID: mdl-22172203

RESUMO

We report the efficient one-step synthesis and detailed physicochemical evaluation of novel biocompatible nanosystems useful for cancer therapeutics and diagnostics (theranostics). These systems are the superparamagnetic iron oxide nanoparticles (SPIONs) carrying the anticancer drug doxorubicin and coated with the covalently bonded biocompatible polymer poly(ethylene glycol) (PEG), native and modified with the biological cancer targeting ligand folic acid (PEG-FA). These multifunctional nanoparticles (SPION-DOX-PEG-FA) are designed to rationally combine multilevel mechanisms of cancer cell targeting (magnetic and biological), bimodal cancer cell imaging (by means of MRI and fluorescence), and bimodal cancer treatment (by targeted drug delivery and by hyperthermia effect). Nevertheless, for these concepts to work together, the choice of ingredients and particle structure are critically important. Therefore, in the present work, a detailed physicochemical characterization of the organic coating of the hybrid nanoparticles is performed by several surface-specific instrumental methods, including surface-enhanced Raman scattering (SERS) spectroscopy, X-ray photoelectron spectrometry (XPS), and time-of-flight secondary ion mass spectrometry (ToF-SIMS). We demonstrate that the anticancer drug doxorubicin is attached to the iron oxide surface and buried under the polymer layers, while folic acid is located on the extreme surface of the organic coating. Interestingly, the moderate presence of folic acid on the particle surface does not increase the particle surface potential, while it is sufficient to increase the particle uptake by MCF-7 cancer cells. All of these original results contribute to the better understanding of the structure-activity relationship for hybrid biocompatible nanosystems and are encouraging for the applications in cancer theranostics.


Assuntos
Coloides , Doxorrubicina/administração & dosagem , Portadores de Fármacos , Ácido Fólico/química , Magnetismo , Nanopartículas , Neoplasias/metabolismo , Polietilenoglicóis/química , Sistemas de Liberação de Medicamentos , Humanos , Microscopia Eletrônica de Transmissão , Espectrofotometria Atômica , Espectroscopia de Infravermelho com Transformada de Fourier , Propriedades de Superfície
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA