RESUMO
Olfaction is orchestrated by olfactory mucosal cells located in the upper nasal cavity. Olfactory dysfunction manifests early in several neurodegenerative disorders including Alzheimer's disease, however, disease-related alterations to the olfactory mucosal cells remain poorly described. The aim of this study was to evaluate the olfactory mucosa differences between cognitively healthy individuals and Alzheimer's disease patients. We report increased amyloid-beta secretion in Alzheimer's disease olfactory mucosal cells and detail cell-type-specific gene expression patterns, unveiling 240 differentially expressed disease-associated genes compared to the cognitively healthy controls, and five distinct cell populations. Overall, alterations of RNA and protein metabolism, inflammatory processes, and signal transduction were observed in multiple cell populations, suggesting their role in Alzheimer's disease-related olfactory mucosa pathophysiology. Furthermore, the single-cell RNA-sequencing proposed alterations in gene expression of mitochondrially located genes in AD OM cells, which were verified by functional assays, demonstrating altered mitochondrial respiration and a reduction of ATP production. Our results reveal disease-related changes of olfactory mucosal cells in Alzheimer's disease and demonstrate the utility of single-cell RNA sequencing data for investigating molecular and cellular mechanisms associated with the disease.
Assuntos
Doença de Alzheimer , Doença de Alzheimer/metabolismo , Peptídeos beta-Amiloides/metabolismo , Humanos , Mucosa Olfatória/metabolismo , RNA , Análise de Sequência de RNARESUMO
Epidemiological studies reveal that air pollution exposure may exacerbate neurodegeneration. Ultrafine particles (UFPs) are pollutants that remain unregulated in ambient air by environmental agencies. Due to their small size (<100 nm), UFPs have the most potential to cross the bodily barriers and thus impact the brain. However, little information exists about how UFPs affect brain function. Alzheimer's disease (AD) is the most common form of dementia, which has been linked to air pollutant exposure, yet limited information is available on the mechanistic connection between them. This study aims to decipher the effects of UFPs in the brain and periphery using the 5xFAD mouse model of AD. In our study design, AD mice and their wildtype littermates were subjected to 2-weeks inhalation exposure of UFPs in a whole-body chamber. That subacute exposure did not affect the amyloid-beta accumulation. However, when multiple cytokines were analyzed, we found increased levels of proinflammatory cytokines in the brain and periphery, with a predominant alteration of interferon-gamma in response to UFP exposure in both genotypes. Following exposure, mitochondrial superoxide dismutase was significantly upregulated only in the 5xFAD hippocampi, depicting oxidative stress induction in the exposed AD mouse group. These data demonstrate that short-term exposure to inhaled UFPs induces inflammation without affecting amyloid-beta load. This study provides a better understanding of adverse effects caused by short-term UFP exposure in the brain and periphery, also in the context of AD.