Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 54
Filtrar
Mais filtros








Base de dados
Intervalo de ano de publicação
1.
Nano Lett ; 24(20): 6069-6077, 2024 May 22.
Artigo em Inglês | MEDLINE | ID: mdl-38739779

RESUMO

Nanoparticles (NPs) can be conjugated with diverse biomolecules and employed in biosensing to detect target analytes in biological samples. This proven concept was primarily used during the COVID-19 pandemic with gold-NP-based lateral flow assays (LFAs). Considering the gold price and its worldwide depletion, here we show that novel plasmonic NPs based on inexpensive metals, titanium nitride (TiN) and copper covered with a gold shell (Cu@Au), perform comparable to or even better than gold nanoparticles. After conjugation, these novel nanoparticles provided high figures of merit for LFA testing, such as high signals and specificity and robust naked-eye signal recognition. Since the main cost of Au NPs in commercial testing kits is the colloidal synthesis, our development with the Cu@Au and the laser-ablation-fabricated TiN NPs is exciting, offering potentially inexpensive plasmonic nanomaterials for various bioapplications. Moreover, our machine learning study showed that biodetection with TiN is more accurate than that with Au.


Assuntos
Cobre , Ouro , Nanopartículas Metálicas , Titânio , Nanopartículas Metálicas/química , Titânio/química , Ouro/química , Cobre/química , Técnicas Biossensoriais/métodos , Técnicas Biossensoriais/economia , Humanos , COVID-19/virologia , COVID-19/diagnóstico , Coloide de Ouro/química , SARS-CoV-2/isolamento & purificação
2.
Adv Sci (Weinh) ; 11(20): e2307060, 2024 May.
Artigo em Inglês | MEDLINE | ID: mdl-38516744

RESUMO

Biodegradable nanomaterials can significantly improve the safety profile of nanomedicine. Germanium nanoparticles (Ge NPs) with a safe biodegradation pathway are developed as efficient photothermal converters for biomedical applications. Ge NPs synthesized by femtosecond-laser ablation in liquids rapidly dissolve in physiological-like environment through the oxidation mechanism. The biodegradation of Ge nanoparticles is preserved in tumor cells in vitro and in normal tissues in mice with a half-life as short as 3.5 days. Biocompatibility of Ge NPs is confirmed in vivo by hematological, biochemical, and histological analyses. Strong optical absorption of Ge in the near-infrared spectral range enables photothermal treatment of engrafted tumors in vivo, following intravenous injection of Ge NPs. The photothermal therapy results in a 3.9-fold reduction of the EMT6/P adenocarcinoma tumor growth with significant prolongation of the mice survival. Excellent mass-extinction of Ge NPs (7.9 L g-1 cm-1 at 808 nm) enables photoacoustic imaging of bones and tumors, following intravenous and intratumoral administrations of the nanomaterial. As such, strongly absorbing near-infrared-light biodegradable Ge nanomaterial holds promise for advanced theranostics.


Assuntos
Germânio , Técnicas Fotoacústicas , Fototerapia , Animais , Camundongos , Técnicas Fotoacústicas/métodos , Germânio/química , Fototerapia/métodos , Modelos Animais de Doenças , Lasers , Nanopartículas/química , Nanopartículas Metálicas/química , Nanopartículas Metálicas/uso terapêutico , Materiais Biocompatíveis/química , Linhagem Celular Tumoral , Neoplasias/terapia , Neoplasias/diagnóstico por imagem , Feminino
3.
bioRxiv ; 2024 Mar 19.
Artigo em Inglês | MEDLINE | ID: mdl-38260353

RESUMO

Nanoparticles (NPs) can be conjugated with diverse biomolecules and employed in biosensing to detect target analytes in biological samples. This proven concept was primarily used during the COVID-19 pandemic with gold NPs-based lateral flow assays (LFAs). Considering the gold price and its worldwide depletion, here we show that novel plasmonic nanoparticles (NPs) based on inexpensive metals, titanium nitride (TiN) and copper covered with a gold shell (Cu@Au), perform comparable or even better than gold nanoparticles. After conjugation, these novel nanoparticles provided high figures of merit for LFA testing, such as high signals and specificity and robust naked-eye signal recognition. To the best of our knowledge, our study represents the 1st application of laser-ablation-fabricated nanoparticles (TiN) in the LFA and dot-blot biotesting. Since the main cost of the Au NPs in commercial testing kits is in the colloidal synthesis, our development with TiN is very exciting, offering potentially very inexpensive plasmonic nanomaterials for various bio-testing applications. Moreover, our machine learning study showed that the bio-detection with TiN is more accurate than that with Au.

4.
Int J Mol Sci ; 24(23)2023 Dec 04.
Artigo em Inglês | MEDLINE | ID: mdl-38069412

RESUMO

Boron neutron capture therapy (BNCT) is one of the most appealing radiotherapy modalities, whose localization can be further improved by the employment of boron-containing nanoformulations, but the fabrication of biologically friendly, water-dispersible nanoparticles (NPs) with high boron content and favorable physicochemical characteristics still presents a great challenge. Here, we explore the use of elemental boron (B) NPs (BNPs) fabricated using the methods of pulsed laser ablation in liquids as sensitizers of BNCT. Depending on the conditions of laser-ablative synthesis, the used NPs were amorphous (a-BNPs) or partially crystallized (pc-BNPs) with a mean size of 20 nm or 50 nm, respectively. Both types of BNPs were functionalized with polyethylene glycol polymer to improve colloidal stability and biocompatibility. The NPs did not initiate any toxicity effects up to concentrations of 500 µg/mL, based on the results of MTT and clonogenic assay tests. The cells with BNPs incubated at a 10B concentration of 40 µg/mL were then irradiated with a thermal neutron beam for 30 min. We found that the presence of BNPs led to a radical enhancement in cancer cell death, namely a drop in colony forming capacity of SW-620 cells down to 12.6% and 1.6% for a-BNPs and pc-BNPs, respectively, while the relevant colony-forming capacity for U87 cells dropped down to 17%. The effect of cell irradiation by neutron beam uniquely was negligible under these conditions. Finally, to estimate the dose and regimes of irradiation for future BNCT in vivo tests, we studied the biodistribution of boron under intratumoral administration of BNPs in immunodeficient SCID mice and recorded excellent retention of boron in tumors. The obtained data unambiguously evidenced the effect of a neutron therapy enhancement, which can be attributed to efficient BNP-mediated generation of α-particles.


Assuntos
Terapia por Captura de Nêutron de Boro , Nanopartículas , Camundongos , Animais , Boro/química , Terapia por Captura de Nêutron de Boro/métodos , Distribuição Tecidual , Camundongos SCID , Lasers
5.
Nanotechnology ; 35(7)2023 Dec 01.
Artigo em Inglês | MEDLINE | ID: mdl-37963406

RESUMO

Nuclear medicine presents one of the most promising modalities for efficient non-invasive treatment of a variety of cancers, but the application of radionuclides in cancer therapy and diagnostics is severely limited by their nonspecific tissue accumulation and poor biocompatibility. Here, we explore the use of nanosized metal-organic frameworks (MOFs) as carriers of radionuclides to order to improve their delivery to tumour. To demonstrate the concept, we prepared polymer-coated MIL-101(Cr)-NH2MOFs and conjugated them with clinically utilized radionuclide188Re. The nanoparticles demonstrated high loading efficacy of radionuclide reaching specific activity of 49 MBq mg-1. Pharmacokinetics of loaded MOFs was investigated in mice bearing colon adenocarcinoma. The biological half-life of the radionuclide in blood was (20.9 ± 1.3) h, and nanoparticles enabled it to passively accumulate and retain in the tumour. The radionuclide delivery with MOFs led to a significant decrease of radioactivity uptake by the thyroid gland and stomach as compared with perrhenate salt injection, which is beneficial for reducing the side toxicity of nuclear therapy. The reported data on the functionalization and pharmacokinetics of MIL-101(Cr)-NH2for radionuclide delivery unveils the promising potential of these MOFs for nuclear medicine.


Assuntos
Adenocarcinoma , Neoplasias do Colo , Estruturas Metalorgânicas , Nanopartículas , Medicina Nuclear , Camundongos , Animais , Radioisótopos
6.
ACS Nano ; 17(19): 19338-19348, 2023 Oct 10.
Artigo em Inglês | MEDLINE | ID: mdl-37738093

RESUMO

Due to the absence of labels and fast analyses, optical biosensors promise major advances in biomedical diagnostics, security, environmental, and food safety applications. However, the sensitivity of the most advanced plasmonic biosensor implementations has a fundamental limitation caused by losses in the system and/or geometry of biochips. Here, we report a "scissor effect" in topologically dark metamaterials which is capable of providing ultrahigh-amplitude sensitivity to biosensing events, thus solving the bottleneck sensitivity limitation problem. We explain how the "scissor effect" can be realized via the proper design of topologically dark metamaterials and describe strategies for their fabrication. To validate the applicability of this effect in biosensing, we demonstrate the detection of folic acid (vitamin important for human health) in a wide 3-log linear dynamic range with a limit of detection of 0.22 nM, which is orders of magnitude better than those previously reported for all optical counterparts. Our work provides possibilities for designing and realizing plasmonic, semiconductor, and dielectric metamaterials with ultrasensitivity to binding events.

7.
Chem Soc Rev ; 52(18): 6554-6585, 2023 Sep 18.
Artigo em Inglês | MEDLINE | ID: mdl-37681251

RESUMO

Label-free optical biosensing holds great promise for a variety of applications in biomedical diagnostics, environmental and food safety, and security. It is already used as a key tool in the investigation of biomolecular binding events and reaction constants in real time and offers further potential additional functionalities and low-cost designs. However, the sensitivity of this technology does not match the routinely used but expensive and slow labelling methods. Therefore, label-free optical biosensing remains predominantly a research tool. Here we discuss how one can go beyond the limits of detection provided by standard optical biosensing platforms and achieve a sensitivity of label-free biosensing that is superior to labelling methods. To this end we review newly emerging optical implementations that overcome current sensitivity barriers by employing novel structural architectures, artificial materials (metamaterials and hetero-metastructures) and using phase of light as a sensing parameter. Furthermore, we elucidate the mechanism of plasmonic phase biosensing and review hyper-sensitive transducers, which can achieve detection limits at the single molecule level (less than 1 fg mm-2) and make it possible to detect analytes at several orders of magnitude lower concentrations than so far reported in literature. We finally discuss newly emerging layouts based on dielectric nanomaterials, bound states in continuum, and exceptional points.


Assuntos
Técnicas Biossensoriais , Nanoestruturas
8.
Nanomaterials (Basel) ; 13(15)2023 Jul 26.
Artigo em Inglês | MEDLINE | ID: mdl-37570485

RESUMO

Proton therapy is one of the promising radiotherapy modalities for the treatment of deep-seated and unresectable tumors, and its efficiency can further be enhanced by using boron-containing substances. Here, we explore the use of elemental boron (B) nanoparticles (NPs) as sensitizers for proton therapy enhancement. Prepared by methods of pulsed laser ablation in water, the used B NPs had a mean size of 50 nm, while a subsequent functionalization of the NPs by polyethylene glycol improved their colloidal stability in buffers. Laser-synthesized B NPs were efficiently absorbed by MNNG/Hos human osteosarcoma cells and did not demonstrate any remarkable toxicity effects up to concentrations of 100 ppm, as followed from the results of the MTT and clonogenic assay tests. Then, we assessed the efficiency of B NPs as sensitizers of cancer cell death under irradiation by a 160.5 MeV proton beam. The irradiation of MNNG/Hos cells at a dose of 3 Gy in the presence of 80 and 100 ppm of B NPs led to a 2- and 2.7-fold decrease in the number of formed cell colonies compared to control samples irradiated in the absence of NPs. The obtained data unambiguously evidenced the effect of a strong proton therapy enhancement mediated by B NPs. We also found that the proton beam irradiation of B NPs leads to the generation of reactive oxygen species (ROS), which evidences a possible involvement of the non-nuclear mechanism of cancer cell death related to oxidative stress. Offering a series of advantages, including a passive targeting option and the possibility of additional theranostic functionalities based on the intrinsic properties of B NPs (e.g., photothermal therapy or neutron boron capture therapy), the proposed concept promises a major advancement in proton beam-based cancer treatment.

9.
Nanomaterials (Basel) ; 13(15)2023 Aug 05.
Artigo em Inglês | MEDLINE | ID: mdl-37570573

RESUMO

The combination of photothermal and magnetic functionalities in one biocompatible nanoformulation forms an attractive basis for developing multifunctional agents for biomedical theranostics. Here, we report the fabrication of silicon-iron (Si-Fe) composite nanoparticles (NPs) for theranostic applications by using a method of femtosecond laser ablation in acetone from a mixed target combining silicon and iron. The NPs were then transferred to water for subsequent biological use. From structural analyses, it was shown that the formed Si-Fe NPs have a spherical shape and sizes ranging from 5 to 150 nm, with the presence of two characteristic maxima around 20 nm and 90 nm in the size distribution. They are mostly composed of silicon with the presence of a significant iron silicide content and iron oxide inclusions. Our studies also show that the NPs exhibit magnetic properties due to the presence of iron ions in their composition, which makes the formation of contrast in magnetic resonance imaging (MRI) possible, as it is verified by magnetic resonance relaxometry at the proton resonance frequency. In addition, the Si-Fe NPs are characterized by strong optical absorption in the window of relative transparency of bio-tissue (650-950 nm). Benefiting from such absorption, the Si-Fe NPs provide strong photoheating in their aqueous suspensions under continuous wave laser excitation at 808 nm. The NP-induced photoheating is described by a photothermal conversion efficiency of 33-42%, which is approximately 3.0-3.3 times larger than that for pure laser-synthesized Si NPs, and it is explained by the presence of iron silicide in the NP composition. Combining the strong photothermal effect and MRI functionality, the synthesized Si-Fe NPs promise a major advancement of modalities for cancer theranostics, including MRI-guided photothermal therapy and surgery.

10.
Proc Natl Acad Sci U S A ; 119(39): e2208830119, 2022 09 27.
Artigo em Inglês | MEDLINE | ID: mdl-36122203

RESUMO

Recent developments in the area of resonant dielectric nanostructures have created attractive opportunities for concentrating and manipulating light at the nanoscale and the establishment of the new exciting field of all-dielectric nanophotonics. Transition metal dichalcogenides (TMDCs) with nanopatterned surfaces are especially promising for these tasks. Still, the fabrication of these structures requires sophisticated lithographic processes, drastically complicating application prospects. To bridge this gap and broaden the application scope of TMDC nanomaterials, we report here femtosecond laser-ablative fabrication of water-dispersed spherical TMDC (MoS2 and WS2) nanoparticles (NPs) of variable size (5 to 250 nm). Such NPs demonstrate exciting optical and electronic properties inherited from TMDC crystals, due to preserved crystalline structure, which offers a unique combination of pronounced excitonic response and high refractive index value, making possible a strong concentration of electromagnetic field in the NPs. Furthermore, such NPs offer additional tunability due to hybridization between the Mie and excitonic resonances. Such properties bring to life a number of nontrivial effects, including enhanced photoabsorption and photothermal conversion. As an illustration, we demonstrate that the NPs exhibit a very strong photothermal response, much exceeding that of conventional dielectric nanoresonators based on Si. Being in a mobile colloidal state and exhibiting superior optical properties compared to other dielectric resonant structures, the synthesized TMDC NPs offer opportunities for the development of next-generation nanophotonic and nanotheranostic platforms, including photothermal therapy and multimodal bioimaging.


Assuntos
Nanosferas , Medicina de Precisão , Refratometria , Molibdênio , Nanosferas/uso terapêutico , Medicina de Precisão/instrumentação , Água
11.
Materials (Basel) ; 15(15)2022 Aug 02.
Artigo em Inglês | MEDLINE | ID: mdl-35955245

RESUMO

Due to particular physico-chemical characteristics and prominent optical properties, nanostructured germanium (Ge) appears as a promising material for biomedical applications, but its use in biological systems has been limited so far due to the difficulty of preparation of Ge nanostructures in a pure, uncontaminated state. Here, we explored the fabrication of Ge nanoparticles (NPs) using methods of pulsed laser ablation in ambient gas (He or He-N2 mixtures) maintained at low residual pressures (1-5 Torr). We show that the ablated material can be deposited on a substrate (silicon wafer in our case) to form a nanostructured thin film, which can then be ground in ethanol by ultrasound to form a stable suspension of Ge NPs. It was found that these formed NPs have a wide size dispersion, with sizes between a few nm and hundreds of nm, while a subsequent centrifugation step renders possible the selection of one or another NP size fraction. Structural characterization of NPs showed that they are composed of aggregations of Ge crystals, covered by an oxide shell. Solutions of the prepared NPs exhibited largely dominating photoluminescence (PL) around 450 nm, attributed to defects in the germanium oxide shell, while a separated fraction of relatively small (5-10 nm) NPs exhibited a red-shifted PL band around 725 nm under 633 nm excitation, which could be attributed to quantum confinement effects. It was also found that the formed NPs exhibit high absorption in the visible and near-IR spectral ranges and can be strongly heated under photoexcitation in the region of relative tissue transparency, which opens access to phototherapy functionality. Combining imaging and therapy functionalities in the biological transparency window, laser-synthesized Ge NPs present a novel promising object for cancer theranostics.

12.
Sci Rep ; 12(1): 9129, 2022 06 01.
Artigo em Inglês | MEDLINE | ID: mdl-35650237

RESUMO

Boron-based nano-formulations look very promising for biomedical applications, including photo- and boron neutron capture therapies, but the fabrication of non-toxic water-dispersible boron nanoparticles (NPs), which contain the highest boron atom concentration, is difficult using currently available chemical and plasma synthesis methods. Here, we demonstrate purely aqueous synthesis of clean boron NPs by methods of femtosecond laser ablation from a solid boron target in water, thus free of any toxic organic solvents, and characterize their properties. We show that despite highly oxidizing water ambience, the laser-ablative synthesis process follows an unusual scenario leading to the formation of boron NPs together with boric acid (H3BO3) as an oxidation by-product coating the nanoparticles, which acts to stabilize the elemental boron NPs dispersion. We then demonstrate the purification of boron NPs from residual boric acid in deionized water, followed by their coating with polyethylene glycol to improve colloidal stability and biocompatibility. It was found that the formed NPs have a spherical shape with averaged size of about 37 nm, and are composed of elemental boron in mostly amorphous phase with the presence of certain crystalline fraction. The synthesized NPs demonstrate low toxicity and exhibit strong absorption in the NIR window of relative tissue transparency, promising their use in photoacoustic imaging and phototherapy, in addition to their promise for neutron capture therapy. This combined potential ability of generating imaging and therapy functionalities makes laser-synthesized B NPs a very promising multifunctional agent for biomedical applications.


Assuntos
Boro , Nanopartículas , Linhagem Celular Tumoral , Lasers , Nanopartículas/química , Água/química
13.
Nanomaterials (Basel) ; 12(10)2022 May 13.
Artigo em Inglês | MEDLINE | ID: mdl-35630892

RESUMO

Owing to a strong photothermal response in the near-IR spectral range and very low toxicity, titanium nitride (TiN) nanoparticles (NPs) synthesized by pulsed laser ablation in liquids (PLAL) present a novel appealing object for photo-induced therapy of cancer, but the properties of these NPs still require detailed investigation. Here, we have elaborated methods of femtosecond laser ablation from the TiN target in a variety of liquid solutions, including acetonitrile, dimethylformamide, acetone, water, and H2O2, to synthesize TiN NPs and clarify the effect of liquid type on the composition and properties of the formed NPs. The ablation in all solvents led to the formation of spherical NPs with a mean size depending on the liquid type, while the composition of the NPs ranged from partly oxidized TiN to almost pure TiO2, which conditioned variations of plasmonic peak in the region of relative tissue transparency (670-700 nm). The degree of NP oxidation depended on the solvent, with much stronger oxidation for NPs prepared in aqueous solutions (especially in H2O2), while the ablation in organic solvents resulted in a partial formation of titanium carbides as by-products. The obtained results contribute to better understanding of the processes in reactive PLAL and can be used to design TiN NPs with desired properties for biomedical applications.

14.
Pharmaceutics ; 14(5)2022 May 05.
Artigo em Inglês | MEDLINE | ID: mdl-35631580

RESUMO

Hybrid multimodal nanoparticles, applicable simultaneously to the noninvasive imaging and therapeutic treatment, are highly demanded for clinical use. Here, Fe-Au core-satellite nanoparticles prepared by the method of pulsed laser ablation in liquids were evaluated as dual magnetic resonance imaging (MRI) and computed tomography (CT) contrast agents and as sensitizers for laser-induced hyperthermia of cancer cells. The biocompatibility of Fe-Au nanoparticles was improved by coating with polyacrylic acid, which provided excellent colloidal stability of nanoparticles with highly negative ζ-potential in water (-38 ± 7 mV) and retained hydrodynamic size (88 ± 20 nm) in a physiological environment. The ferromagnetic iron cores offered great contrast in MRI images with r2 = 11.8 ± 0.8 mM-1 s-1 (at 1 T), while Au satellites showed X-ray attenuation in CT. The intravenous injection of nanoparticles enabled clear tumor border visualization in mice. Plasmonic peak in the Fe-Au hybrids had a tail in the near-infrared region (NIR), allowing them to cause hyperthermia under 808 nm laser exposure. Under NIR irradiation Fe-Au particles provided 24.1 °C/W heating and an IC50 value below 32 µg/mL for three different cancer cell lines. Taken together, these results show that laser synthesized Fe-Au core-satellite nanoparticles are excellent theranostic agents with multimodal imaging and photothermal capabilities.

15.
ACS Nano ; 16(4): 5036-5061, 2022 Apr 26.
Artigo em Inglês | MEDLINE | ID: mdl-35294165

RESUMO

Nuclear medicine is expected to make major advances in cancer diagnosis and therapy; tumor-targeted radiopharmaceuticals preferentially eradicate tumors while causing minimal damage to healthy tissues. The current scope of nuclear medicine can be significantly expanded by integration with nanomedicine, which utilizes nanoparticles for cancer diagnosis and therapy by capitalizing on the increased surface area-to-volume ratio, the passive/active targeting ability and high loading capacity, the greater interaction cross section with biological tissues, the rich surface properties of nanomaterials, the facile decoration of nanomaterials with a plethora of functionalities, and the potential for multiplexing several functionalities within one construct. This review provides a comprehensive discussion of nuclear nanomedicine using tumor-targeted nanoparticles for cancer radiation therapy with either pre-embedded radionuclides or nonradioactive materials which can be extrinsically triggered using various external nuclear particle sources to produce in situ radioactivity. In addition, it describes the prospect of combining nuclear nanomedicine with other modalities to enable synergistically enhanced combination therapies. The review also discusses advances in the fabrication of radionuclides as well as describes laser ablation technologies for producing nanoradiopharmaceuticals, which combine the ease of production with exceptional purity and rapid biodegradability, along with additional imaging or therapeutic functionalities. From a practical standpoint, these attributes of nanoradiopharmaceuticals may provide distinct advantages in diagnostic/therapeutic sensitivity and specificity, imaging resolution, and scalability of turnkey platforms. Coupling image-guided targeted radiation therapy with the possibility of in situ activation of nanomaterials as well as combining with other therapeutic modalities using a multifunctional nanoplatform could herald an era of exciting technological and therapeutic advances to radically transform the landscape of nuclear medicine. The review concludes with a discussion of current challenges and presents the authors' views on future opportunities to stimulate further research in this rewarding field of high societal impact.


Assuntos
Nanopartículas , Neoplasias , Medicina Nuclear , Humanos , Nanomedicina/métodos , Radioisótopos/uso terapêutico , Compostos Radiofarmacêuticos/uso terapêutico , Neoplasias/diagnóstico por imagem , Neoplasias/tratamento farmacológico , Nanomedicina Teranóstica
16.
Nanomaterials (Basel) ; 12(4)2022 Feb 15.
Artigo em Inglês | MEDLINE | ID: mdl-35214980

RESUMO

The combination of magnetic and plasmonic properties at the nanoscale promises the development of novel synergetic image-guided therapy strategies for the treatment of cancer and other diseases, but the fabrication of non-contaminated magneto-plasmonic nanocomposites suitable for biological applications is difficult within traditional chemical methods. Here, we describe a methodology based on laser ablation from Fe target in the presence of preliminarily ablated water-dispersed Au nanoparticles (NPs) to synthesize ultrapure bare (ligand-free) core-satellite nanostructures, consisting of large (several tens of nm) Fe-based core decorated by small (mean size 7.5 nm) Au NPs. The presence of the Fe-based core conditions a relatively strong magnetic response of the nanostructures (magnetization of >12.6 emu/g), while the Au NPs-based satellite shell provides a broad extinction peak centered at 550 nm with a long tale in the near-infrared to overlap with the region of relative tissue transparency (650-950 nm). We also discuss possible mechanisms responsible for the formation of the magnetic-plasmonic nanocomposites. We finally demonstrate a protocol to enhance colloidal stability of the core-satellites in biological environment by their coating with different polymers. Exempt of toxic impurities and combining strong magnetic and plasmonic responses, the formed core-satellite nanocomposites can be used in biomedical applications, including photo- and magneto-induced therapies, magnetic resonance imaging or photoacoustic imaging.

17.
Light Sci Appl ; 11(1): 38, 2022 Feb 21.
Artigo em Inglês | MEDLINE | ID: mdl-35190528

RESUMO

Photodynamic therapy (PDT) is one of the most appealing photonic modalities for cancer treatment based on anticancer activity of light-induced photosensitizer-mediated reactive oxygen species (ROS), but a limited depth of light penetration into tissues does not make possible the treatment of deep-seated neoplasms and thus complicates its widespread clinical adoption. Here, we introduce the concept of genetically encoded bioluminescence resonance energy transfer (BRET)-activated PDT, which combines an internal light source and a photosensitizer (PS) in a single-genetic construct, which can be delivered to tumors seated at virtually unlimited depth and then triggered by the injection of a substrate to initiate their treatment. To illustrate the concept, we engineered genetic NanoLuc-miniSOG BRET pair, combining NanoLuc luciferase flashlight and phototoxic flavoprotein miniSOG, which generates ROS under luciferase-substrate injection. We prove the concept feasibility in mice bearing NanoLuc-miniSOG expressing tumor, followed by its elimination under the luciferase-substrate administration. Then, we demonstrate a targeted delivery of NanoLuc-miniSOG gene, via tumor-specific lentiviral particles, into a tumor, followed by its successful elimination, with tumor-growth inhibition (TGI) coefficient exceeding 67%, which confirms a great therapeutic potential of the proposed concept. In conclusion, this study provides proof-of-concept for deep-tissue "photodynamic" therapy without external light source that can be considered as an alternative for traditional PDT.

18.
Nanomaterials (Basel) ; 11(3)2021 Feb 26.
Artigo em Inglês | MEDLINE | ID: mdl-33652885

RESUMO

Owing to strong plasmonic absorption and excellent biocompatibility, gold nanostructures are among best candidates for photoacoustic bioimaging and photothermal therapy, but such applications require ultrapure Au-based nanoformulations of complex geometry (core-shells, nanorods) in order to shift the absorption band toward the region of relative tissue transparency (650-1000 nm). Here, we present a methodology for the fabrication of Si@Au core-satellite nanostructures, comprising of a Si core covered with small Au nanoparticles (NP), based on laser ablative synthesis of Si and Au NPs in water/ethanol solutions, followed by a chemical modification of the Si NPs by 3-aminopropyltrimethoxysilane (APTMS) and their subsequent decoration by the Au NPs. We show that the formed core-satellites have a red-shifted plasmonic absorption feature compared to that of pure Au NPs (520 nm), with the position of the peak depending on APTMS amount, water-ethanol solvent percentage and Si-Au volume ratio. As an example, even relatively small 40-nm core-satellites (34 nm Si core + 4 nm Au shell) provided a much red shifted peak centered around 610 nm and having a large tail over 700 nm. The generation of the plasmonic peak is confirmed by modeling of Si@Au core-shells of relevant parameters via Mie theory. Being relatively small and exempt of any toxic impurity due to ultraclean laser synthesis, the Si@Au core-satellites promise a major advancement of imaging and phototherapy modalities based on plasmonic properties of nanomaterials.

19.
Nanomaterials (Basel) ; 11(2)2021 Feb 18.
Artigo em Inglês | MEDLINE | ID: mdl-33670727

RESUMO

Herein, we report the fabrication and characterization of novel polycaprolactone (PCL)-based nanofibers functionalized with bare (ligand-free) titanium nitride (TiN) nanoparticles (NPs) for tissue engineering applications. Nanofibers were prepared by a newly developed protocol based on the electrospinning of PCL solutions together with TiN NPs synthesized by femtosecond laser ablation in acetone. The generated hybrid nanofibers were characterised using spectroscopy, microscopy, and thermal analysis techniques. As shown by scanning electron microscopy measurements, the fabricated electrospun nanofibers had uniform morphology, while their diameter varied between 0.403 ± 0.230 µm and 1.1 ± 0.15 µm by optimising electrospinning solutions and parameters. Thermal analysis measurements demonstrated that the inclusion of TiN NPs in nanofibers led to slight variation in mass degradation initiation and phase change behaviour (Tm). In vitro viability tests using the incubation of 3T3 fibroblast cells in a nanofiber-based matrix did not reveal any adverse effects, confirming the biocompatibility of hybrid nanofiber structures. The generated hybrid nanofibers functionalized with plasmonic TiN NPs are promising for the development of smart scaffold for tissue engineering platforms and open up new avenues for theranostic applications.

20.
Mater Sci Eng C Mater Biol Appl ; 120: 111717, 2021 Jan.
Artigo em Inglês | MEDLINE | ID: mdl-33545869

RESUMO

Having plasmonic absorption within the biological transparency window, titanium nitride (TiN) nanoparticles (NPs) can potentially outperform gold counterparts in phototheranostic applications, but characteristics of available TiN NPs are still far from required parameters. Recently emerged laser-ablative synthesis opens up opportunities to match these parameters as it makes possible the production of ultrapure low size-dispersed spherical TiN NPs, capable of generating a strong phototherapy effect under 750-800 nm excitation. This study presents the first assessment of toxicity, biodistribution and pharmacokinetics of laser-synthesized TiN NPs. Tests in vitro using 8 cell lines from different tissues evidenced safety of both as-synthesized and PEG-coated NPs (TiN-PEG NPs). After systemic administration in mice, they mainly accumulated in liver and spleen, but did not cause any sign of toxicity or organ damage up to concentration of 6 mg kg-1, which was confirmed by the invariability of blood biochemical parameters, weight and hemotoxicity examination. The NPs demonstrated efficient passive accumulation in EMT6/P mammary tumor, while concentration of TiN-PEG NPs was 2.2-fold higher due to "stealth" effect yielding 7-times longer circulation in blood. The obtained results evidence high safety of laser-synthesized TiN NPs for biological systems, which promises a major advancement of phototheranostic modalities on their basis.


Assuntos
Ouro , Nanopartículas , Animais , Lasers , Camundongos , Tamanho da Partícula , Distribuição Tecidual , Titânio
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA